Cargando…
Sitting and standing intention can be decoded from scalp EEG recorded prior to movement execution
Low frequency signals recorded from non-invasive electroencephalography (EEG), in particular movement-related cortical potentials (MRPs), are associated with preparation and execution of movement and thus present a target for use in brain-machine interfaces. We investigated the ability to decode mov...
Autores principales: | Bulea, Thomas C., Prasad, Saurabh, Kilicarslan, Atilla, Contreras-Vidal, Jose L. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4243562/ https://www.ncbi.nlm.nih.gov/pubmed/25505377 http://dx.doi.org/10.3389/fnins.2014.00376 |
Ejemplares similares
-
Neural decoding of expressive human movement from scalp electroencephalography (EEG)
por: Cruz-Garza, Jesus G., et al.
Publicado: (2014) -
Multiple Kernel Based Region Importance Learning for Neural Classification of Gait States from EEG Signals
por: Zhang, Yuhang, et al.
Publicado: (2017) -
The effects of vision on sit-to-stand movement
por: Siriphorn, Akkradate, et al.
Publicado: (2015) -
Decoding EEG rhythms offline and online during motor imagery for standing and sitting based on a brain-computer interface
por: Triana-Guzman, Nayid, et al.
Publicado: (2022) -
Single-Trial Decoding of Scalp EEG under Natural Conditions
por: Tuckute, Greta, et al.
Publicado: (2019)