Cargando…
A biologically plausible learning rule for the Infomax on recurrent neural networks
A fundamental issue in neuroscience is to understand how neuronal circuits in the cerebral cortex play their functional roles through their characteristic firing activity. Several characteristics of spontaneous and sensory-evoked cortical activity have been reproduced by Infomax learning of neural n...
Autores principales: | Hayakawa, Takashi, Kaneko, Takeshi, Aoyagi, Toshio |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4243565/ https://www.ncbi.nlm.nih.gov/pubmed/25505404 http://dx.doi.org/10.3389/fncom.2014.00143 |
Ejemplares similares
-
Discrete Infomax Codes for Supervised Representation Learning
por: Lee, Yoonho, et al.
Publicado: (2022) -
Biologically plausible local synaptic learning rules robustly implement deep supervised learning
por: Konishi, Masataka, et al.
Publicado: (2023) -
Biologically Plausible Class Discrimination Based Recurrent Neural Network Training for Motor Pattern Generation
por: Wijesinghe, Parami, et al.
Publicado: (2020) -
Unsupervised ranking of clustering algorithms by INFOMAX
por: Sikdar, Sandipan, et al.
Publicado: (2020) -
Biologically Plausible Training Mechanisms for Self-Supervised Learning in Deep Networks
por: Tang, Mufeng, et al.
Publicado: (2022)