Cargando…
Learning accurate and interpretable models based on regularized random forests regression
BACKGROUND: Many biology related research works combine data from multiple sources in an effort to understand the underlying problems. It is important to find and interpret the most important information from these sources. Thus it will be beneficial to have an effective algorithm that can simultane...
Autores principales: | Liu, Sheng, Dissanayake, Shamitha, Patel, Sanjay, Dang, Xin, Mlsna, Todd, Chen, Yixin, Wilkins, Dawn |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4243592/ https://www.ncbi.nlm.nih.gov/pubmed/25350120 http://dx.doi.org/10.1186/1752-0509-8-S3-S5 |
Ejemplares similares
-
Bioprocess data mining using regularized regression and random forests
por: Hassan, Syeda Sakira, et al.
Publicado: (2013) -
Microbiome Data Accurately Predicts the Postmortem Interval Using Random Forest Regression Models
por: Belk, Aeriel, et al.
Publicado: (2018) -
Covariance regression with random forests
por: Alakus, Cansu, et al.
Publicado: (2023) -
Robust priors for regularized regression
por: Bobadilla-Suarez, Sebastian, et al.
Publicado: (2022) -
Graph ranking for exploratory gene data analysis
por: Gao, Cuilan, et al.
Publicado: (2009)