Cargando…

Impact of maternal dietary fat supplementation during gestation upon skeletal muscle in neonatal pigs

BACKGROUND: Maternal diet during pregnancy can modulate skeletal muscle development of the offspring. Previous studies in pigs have indicated that a fat supplemented diet during pregnancy can improve piglet outcome, however, this is in contrast to human studies suggesting adverse effects of saturate...

Descripción completa

Detalles Bibliográficos
Autores principales: Fainberg, Hernan P, Almond, Kayleigh L, Li, Dongfang, Rauch, Cyril, Bikker, Paul, Symonds, Michael E, Mostyn, Alison
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4243771/
https://www.ncbi.nlm.nih.gov/pubmed/25189710
http://dx.doi.org/10.1186/s12899-014-0006-0
Descripción
Sumario:BACKGROUND: Maternal diet during pregnancy can modulate skeletal muscle development of the offspring. Previous studies in pigs have indicated that a fat supplemented diet during pregnancy can improve piglet outcome, however, this is in contrast to human studies suggesting adverse effects of saturated fats during pregnancy. This study aimed to investigate the impact of a fat supplemented (palm oil) “high fat” diet on skeletal muscle development in a porcine model. Histological and metabolic features of the biceps femoris muscle obtained from 7-day-old piglets born to sows assigned to either a commercial (C, n = 7) or to an isocaloric fat supplementation diet (“high fat” HF, n = 7) during pregnancy were assessed. RESULTS: Offspring exposed to a maternal HF diet demonstrated enhanced muscular development, reflected by an increase in fractional growth rate, rise in myofibre cross-sectional area, increased storage of glycogen and reduction in lipid staining of myofibres. Although both groups had similar intramuscular protein and triglyceride concentrations, the offspring born to HF mothers had a higher proportion of arachidonic acid (C20:4n6) and a reduction in α-linolenic acid (C18:3n3) compared to C group offspring. The HF group muscle also exhibited a higher ratio of C20:3n6 to C20:4n6 and total n-6 to n-3 in conjunction with up-regulation of genes associated with free fatty acid uptake and biogenesis. CONCLUSION: In conclusion, a HF gestational diet accelerates the maturation of offspring biceps femoris muscle, reflected in increased glycolytic metabolism and fibre cross sectional area, differences accompanied with a potential resetting of myofibre nutrient uptake.