Cargando…
A multiscale statistical mechanical framework integrates biophysical and genomic data to assemble cancer networks
Functional interpretation of genomic variation is critical to understanding human disease but it remains difficult to predict the effects of specific mutations on protein interaction networks and the phenotypes they regulate. We describe an analytical framework based on multiscale statistical mechan...
Autores principales: | AlQuraishi, Mohammed, Koytiger, Grigoriy, Jenney, Anne, MacBeath, Gavin, Sorger, Peter K. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4244270/ https://www.ncbi.nlm.nih.gov/pubmed/25362484 http://dx.doi.org/10.1038/ng.3138 |
Ejemplares similares
-
BIOPHYSICAL PREDICTION OF PROTEIN-PEPTIDE INTERACTIONS AND SIGNALING NETWORKS USING MACHINE LEARNING
por: Cunningham, Joseph M., et al.
Publicado: (2020) -
Chemical genomics: what will it take and who gets to play?
por: MacBeath, Gavin
Publicado: (2001) -
Protein structure prediction by AlphaFold2: are attention and symmetries all you need?
por: Bouatta, Nazim, et al.
Publicado: (2021) -
A System-Wide Investigation of the Dynamics of Wnt Signaling Reveals Novel Phases of Transcriptional Regulation
por: Gujral, Taranjit S., et al.
Publicado: (2010) -
An integrated approach to prognosis using protein microarrays and nonparametric methods
por: Knickerbocker, Tanya, et al.
Publicado: (2007)