Cargando…
Spatial component analysis of MRI data for Alzheimer's disease diagnosis: a Bayesian network approach
This work presents a spatial-component (SC) based approach to aid the diagnosis of Alzheimer's disease (AD) using magnetic resonance images. In this approach, the whole brain image is subdivided in regions or spatial components, and a Bayesian network is used to model the dependencies between a...
Autores principales: | Illan, Ignacio A., Górriz, Juan M., Ramírez, Javier, Meyer-Base, Anke |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4244642/ https://www.ncbi.nlm.nih.gov/pubmed/25505408 http://dx.doi.org/10.3389/fncom.2014.00156 |
Ejemplares similares
-
Exploratory graphical models of functional and structural connectivity patterns for Alzheimer's Disease diagnosis
por: Ortiz, Andrés, et al.
Publicado: (2015) -
Dynamical Graph Theory Networks Methods for the Analysis of Sparse Functional Connectivity Networks and for Determining Pinning Observability in Brain Networks
por: Meyer-Bäse, Anke, et al.
Publicado: (2017) -
Distinguishing Parkinson's disease from atypical parkinsonian syndromes using PET data and a computer system based on support vector machines and Bayesian networks
por: Segovia, Fermín, et al.
Publicado: (2015) -
A Heavy Tailed Expectation Maximization Hidden Markov Random Field Model with Applications to Segmentation of MRI
por: Castillo-Barnes, Diego, et al.
Publicado: (2017) -
Effective diagnosis of Alzheimer’s disease by means of large margin-based methodology
por: Chaves, Rosa, et al.
Publicado: (2012)