Cargando…
Quantum dot-based multiphoton fluorescent pipettes for targeted neuronal electrophysiology
Targeting visually-identified neurons for electrophysiological recording is a fundamental neuroscience technique; however, its potential is hampered by poor visualization of pipette tips in deep brain tissue. We describe a technique whereby quantum dots coat glass pipettes providing strong two-photo...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4245189/ https://www.ncbi.nlm.nih.gov/pubmed/25326662 http://dx.doi.org/10.1038/nmeth.3146 |
Sumario: | Targeting visually-identified neurons for electrophysiological recording is a fundamental neuroscience technique; however, its potential is hampered by poor visualization of pipette tips in deep brain tissue. We describe a technique whereby quantum dots coat glass pipettes providing strong two-photon contrast at deeper penetration depths than current methods. We demonstrate utility in targeted patch-clamp recording experiments and single cell electroporation from identified rat and mouse neurons in vitro and in vivo. |
---|