Cargando…
Computational Study of Estrogen Receptor-Alpha Antagonist with Three-Dimensional Quantitative Structure-Activity Relationship, Support Vector Regression, and Linear Regression Methods
Human estrogen receptor (ER) isoforms, ERα and ERβ, have long been an important focus in the field of biology. To better understand the structural features associated with the binding of ERα ligands to ERα and modulate their function, several QSAR models, including CoMFA, CoMSIA, SVR, and LR methods...
Autores principales: | Chang, Ying-Hsin, Chen, Jun-Yan, Hor, Chiou-Yi, Chuang, Yu-Chung, Yang, Chang-Biau, Yang, Chia-Ning |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi Publishing Corporation
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4245501/ https://www.ncbi.nlm.nih.gov/pubmed/25505989 http://dx.doi.org/10.1155/2013/743139 |
Ejemplares similares
-
Prediction of Protein Essentiality by the Support Vector Machine with Statistical Tests
por: Hor, Chiou-Yi, et al.
Publicado: (2013) -
A Tool Preference Choice Method for RNA Secondary Structure Prediction by SVM with Statistical Tests
por: Hor, Chiou-Yi, et al.
Publicado: (2013) -
Linear regression
por: Beck, Vera L
Publicado: (2017) -
Linear regression
por: Groß, Jürgen
Publicado: (2003) -
Linear regression
por: Gross, Jurgen
Publicado: (2003)