Cargando…

Doubly Robust Estimation of Optimal Dynamic Treatment Regimes

We compare methods for estimating optimal dynamic decision rules from observational data, with particular focus on estimating the regret functions defined by Murphy (in J. R. Stat. Soc., Ser. B, Stat. Methodol. 65:331–355, 2003). We formulate a doubly robust version of the regret-regression approach...

Descripción completa

Detalles Bibliográficos
Autores principales: Barrett, Jessica K., Henderson, Robin, Rosthøj, Susanne
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer US 2013
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4245503/
https://www.ncbi.nlm.nih.gov/pubmed/25484995
http://dx.doi.org/10.1007/s12561-013-9097-6
Descripción
Sumario:We compare methods for estimating optimal dynamic decision rules from observational data, with particular focus on estimating the regret functions defined by Murphy (in J. R. Stat. Soc., Ser. B, Stat. Methodol. 65:331–355, 2003). We formulate a doubly robust version of the regret-regression approach of Almirall et al. (in Biometrics 66:131–139, 2010) and Henderson et al. (in Biometrics 66:1192–1201, 2010) and demonstrate that it is equivalent to a reduced form of Robins’ efficient g-estimation procedure (Robins, in Proceedings of the Second Symposium on Biostatistics. Springer, New York, pp. 189–326, 2004). Simulation studies suggest that while the regret-regression approach is most efficient when there is no model misspecification, in the presence of misspecification the efficient g-estimation procedure is more robust. The g-estimation method can be difficult to apply in complex circumstances, however. We illustrate the ideas and methods through an application on control of blood clotting time for patients on long term anticoagulation.