Cargando…
Smart Liquid SERS Substrates based on Fe(3)O(4)/Au Nanoparticles with Reversibly Tunable Enhancement Factor for Practical Quantitative Detection
There is a strong correlation between the surface enhanced Raman scattering (SERS) enhancement factor (EF), the excitation wavelength, and the feature properties (composition, size, geometry, and analytes). The prediction of the EF of specific substrates, crucial to the quantitative SERS detection,...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4245597/ https://www.ncbi.nlm.nih.gov/pubmed/25428185 http://dx.doi.org/10.1038/srep07204 |
Sumario: | There is a strong correlation between the surface enhanced Raman scattering (SERS) enhancement factor (EF), the excitation wavelength, and the feature properties (composition, size, geometry, and analytes). The prediction of the EF of specific substrates, crucial to the quantitative SERS detection, is however still very difficult. The present work presents smart liquid SERS substrates consisting of suspensions of Fe(3)O(4)/Au nanoparticles, which provide high spot-to-spot uniformity, reproducibility and good reversibility. The EF of these substrates can be reversibly tuned by applying an external magnetic field. The EF magnetic tuning is within 2 orders of magnitude per substrate in the range of 10(4)–10(7). The ability to reversibly adjust the SERS EF enables to reduce EF variations caused by external effects such as substrate-to-substrate differences and long-term-storage degradation. This improves the quantitative detection of analytes and might be a significant step forward in employing SERS for practical applications. |
---|