Cargando…
svaseq: removing batch effects and other unwanted noise from sequencing data
It is now known that unwanted noise and unmodeled artifacts such as batch effects can dramatically reduce the accuracy of statistical inference in genomic experiments. These sources of noise must be modeled and removed to accurately measure biological variability and to obtain correct statistical in...
Autor principal: | Leek, Jeffrey T. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4245966/ https://www.ncbi.nlm.nih.gov/pubmed/25294822 http://dx.doi.org/10.1093/nar/gku864 |
Ejemplares similares
-
CRISPR/Cas9-targeted removal of unwanted sequences from small-RNA sequencing libraries
por: Hardigan, Andrew A, et al.
Publicado: (2019) -
Removing unwanted variation in a differential methylation analysis of Illumina HumanMethylation450 array data
por: Maksimovic, Jovana, et al.
Publicado: (2015) -
Flexible comparison of batch correction methods for single-cell RNA-seq using BatchBench
por: Chazarra-Gil, Ruben, et al.
Publicado: (2021) -
S3norm: simultaneous normalization of sequencing depth and signal-to-noise ratio in epigenomic data
por: Xiang, Guanjue, et al.
Publicado: (2020) -
Improving the value of public RNA-seq expression data by phenotype prediction
por: Ellis, Shannon E, et al.
Publicado: (2018)