Cargando…

Folded Monomers and Hexamers of the Ectodomain of the HIV gp41 Membrane Fusion Protein: Potential Roles in Fusion and Synergy Between the Fusion Peptide, Hairpin, and Membrane-Proximal External Region

[Image: see text] HIV is an enveloped virus and fusion between the HIV and host cell membranes is catalyzed by the ectodomain of the HIV gp41 membrane protein. Both the N-terminal fusion peptide (FP) and C-terminal membrane-proximal external region (MPER) are critical for fusion and are postulated t...

Descripción completa

Detalles Bibliográficos
Autores principales: Banerjee, Koyeli, Weliky, David P.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2014
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4245979/
https://www.ncbi.nlm.nih.gov/pubmed/25372604
http://dx.doi.org/10.1021/bi501159w
_version_ 1782346462635491328
author Banerjee, Koyeli
Weliky, David P.
author_facet Banerjee, Koyeli
Weliky, David P.
author_sort Banerjee, Koyeli
collection PubMed
description [Image: see text] HIV is an enveloped virus and fusion between the HIV and host cell membranes is catalyzed by the ectodomain of the HIV gp41 membrane protein. Both the N-terminal fusion peptide (FP) and C-terminal membrane-proximal external region (MPER) are critical for fusion and are postulated to bind to the host cell and HIV membranes, respectively. Prior to fusion, the gp41 on the virion is a trimer in noncovalent complex with larger gp120 subunits. The gp120 bind host cell receptors and move away or dissociate from gp41 which subsequently catalyzes fusion. In the present work, large gp41 ectodomain constructs were produced and biophysically and structurally characterized. One significant finding is observation of synergy between the FP, hairpin, and MPER in vesicle fusion. The ectodomain-induced fusion can be very efficient with only ∼15 gp41 per vesicle, which is comparable to the number of gp41 on a virion. Conditions are found with predominant monomer or hexamer but not trimer and these may be oligomeric states during fusion. Monomer gp41 ectodomain is hyperthermostable and has helical hairpin structure. A new HIV fusion model is presented where (1) hemifusion is catalyzed by folding of gp41 ectodomain monomers into hairpins and (2) subsequent fusion steps are catalyzed by assembly into a hexamer with FPs in an antiparallel β sheet. There is also significant interest in the gp41 MPER because it is the epitope of several broadly neutralizing antibodies. Two of these antibodies bind our gp41 ectodomain constructs and support investigation of the gp41 ectodomain as an immunogen in HIV vaccine development.
format Online
Article
Text
id pubmed-4245979
institution National Center for Biotechnology Information
language English
publishDate 2014
publisher American Chemical Society
record_format MEDLINE/PubMed
spelling pubmed-42459792015-11-05 Folded Monomers and Hexamers of the Ectodomain of the HIV gp41 Membrane Fusion Protein: Potential Roles in Fusion and Synergy Between the Fusion Peptide, Hairpin, and Membrane-Proximal External Region Banerjee, Koyeli Weliky, David P. Biochemistry [Image: see text] HIV is an enveloped virus and fusion between the HIV and host cell membranes is catalyzed by the ectodomain of the HIV gp41 membrane protein. Both the N-terminal fusion peptide (FP) and C-terminal membrane-proximal external region (MPER) are critical for fusion and are postulated to bind to the host cell and HIV membranes, respectively. Prior to fusion, the gp41 on the virion is a trimer in noncovalent complex with larger gp120 subunits. The gp120 bind host cell receptors and move away or dissociate from gp41 which subsequently catalyzes fusion. In the present work, large gp41 ectodomain constructs were produced and biophysically and structurally characterized. One significant finding is observation of synergy between the FP, hairpin, and MPER in vesicle fusion. The ectodomain-induced fusion can be very efficient with only ∼15 gp41 per vesicle, which is comparable to the number of gp41 on a virion. Conditions are found with predominant monomer or hexamer but not trimer and these may be oligomeric states during fusion. Monomer gp41 ectodomain is hyperthermostable and has helical hairpin structure. A new HIV fusion model is presented where (1) hemifusion is catalyzed by folding of gp41 ectodomain monomers into hairpins and (2) subsequent fusion steps are catalyzed by assembly into a hexamer with FPs in an antiparallel β sheet. There is also significant interest in the gp41 MPER because it is the epitope of several broadly neutralizing antibodies. Two of these antibodies bind our gp41 ectodomain constructs and support investigation of the gp41 ectodomain as an immunogen in HIV vaccine development. American Chemical Society 2014-11-05 2014-11-25 /pmc/articles/PMC4245979/ /pubmed/25372604 http://dx.doi.org/10.1021/bi501159w Text en Copyright © 2014 American Chemical Society This is an open access article published under an ACS AuthorChoice License (http://pubs.acs.org/page/policy/authorchoice_termsofuse.html) , which permits copying and redistribution of the article or any adaptations for non-commercial purposes.
spellingShingle Banerjee, Koyeli
Weliky, David P.
Folded Monomers and Hexamers of the Ectodomain of the HIV gp41 Membrane Fusion Protein: Potential Roles in Fusion and Synergy Between the Fusion Peptide, Hairpin, and Membrane-Proximal External Region
title Folded Monomers and Hexamers of the Ectodomain of the HIV gp41 Membrane Fusion Protein: Potential Roles in Fusion and Synergy Between the Fusion Peptide, Hairpin, and Membrane-Proximal External Region
title_full Folded Monomers and Hexamers of the Ectodomain of the HIV gp41 Membrane Fusion Protein: Potential Roles in Fusion and Synergy Between the Fusion Peptide, Hairpin, and Membrane-Proximal External Region
title_fullStr Folded Monomers and Hexamers of the Ectodomain of the HIV gp41 Membrane Fusion Protein: Potential Roles in Fusion and Synergy Between the Fusion Peptide, Hairpin, and Membrane-Proximal External Region
title_full_unstemmed Folded Monomers and Hexamers of the Ectodomain of the HIV gp41 Membrane Fusion Protein: Potential Roles in Fusion and Synergy Between the Fusion Peptide, Hairpin, and Membrane-Proximal External Region
title_short Folded Monomers and Hexamers of the Ectodomain of the HIV gp41 Membrane Fusion Protein: Potential Roles in Fusion and Synergy Between the Fusion Peptide, Hairpin, and Membrane-Proximal External Region
title_sort folded monomers and hexamers of the ectodomain of the hiv gp41 membrane fusion protein: potential roles in fusion and synergy between the fusion peptide, hairpin, and membrane-proximal external region
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4245979/
https://www.ncbi.nlm.nih.gov/pubmed/25372604
http://dx.doi.org/10.1021/bi501159w
work_keys_str_mv AT banerjeekoyeli foldedmonomersandhexamersoftheectodomainofthehivgp41membranefusionproteinpotentialrolesinfusionandsynergybetweenthefusionpeptidehairpinandmembraneproximalexternalregion
AT welikydavidp foldedmonomersandhexamersoftheectodomainofthehivgp41membranefusionproteinpotentialrolesinfusionandsynergybetweenthefusionpeptidehairpinandmembraneproximalexternalregion