Cargando…
Room temperature continuous–wave green lasing from an InGaN microdisk on silicon
Optically pumped green lasing with an ultra low threshold has been achieved using an InGaN/GaN based micro-disk with an undercut structure on silicon substrates. The micro-disks with a diameter of around 1 μm were fabricated by means of a combination of a cost-effective silica micro-sphere approach,...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4246202/ https://www.ncbi.nlm.nih.gov/pubmed/25431166 http://dx.doi.org/10.1038/srep07250 |
Sumario: | Optically pumped green lasing with an ultra low threshold has been achieved using an InGaN/GaN based micro-disk with an undercut structure on silicon substrates. The micro-disks with a diameter of around 1 μm were fabricated by means of a combination of a cost-effective silica micro-sphere approach, dry-etching and subsequent chemical etching. The combination of these techniques both minimises the roughness of the sidewalls of the micro-disks and also produces excellent circular geometry. Utilizing this fabrication process, lasing has been achieved at room temperature under optical pumping from a continuous-wave laser diode. The threshold for lasing is as low as 1 kW/cm(2). Time–resolved micro photoluminescence (PL) and confocal PL measurements have been performed in order to further confirm the lasing action in whispering gallery modes and also investigate the excitonic recombination dynamics of the lasing. |
---|