Cargando…
Motif depletion in bacteriophages infecting hosts with CRISPR systems
BACKGROUND: CRISPR is a microbial immune system likely to be involved in host-parasite coevolution. It functions using target sequences encoded by the bacterial genome, which interfere with invading nucleic acids using a homology-dependent system. The system also requires protospacer associated moti...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4246573/ https://www.ncbi.nlm.nih.gov/pubmed/25103210 http://dx.doi.org/10.1186/1471-2164-15-663 |
_version_ | 1782346541920419840 |
---|---|
author | Kupczok, Anne Bollback, Jonathan P |
author_facet | Kupczok, Anne Bollback, Jonathan P |
author_sort | Kupczok, Anne |
collection | PubMed |
description | BACKGROUND: CRISPR is a microbial immune system likely to be involved in host-parasite coevolution. It functions using target sequences encoded by the bacterial genome, which interfere with invading nucleic acids using a homology-dependent system. The system also requires protospacer associated motifs (PAMs), short motifs close to the target sequence that are required for interference in CRISPR types I and II. Here, we investigate whether PAMs are depleted in phage genomes due to selection pressure to escape recognition. RESULTS: To this end, we analyzed two data sets. Phages infecting all bacterial hosts were analyzed first, followed by a detailed analysis of phages infecting the genus Streptococcus, where PAMs are best understood. We use two different measures of motif underrepresentation that control for codon bias and the frequency of submotifs. We compare phages infecting species with a particular CRISPR type to those infecting species without that type. Since only known PAMs were investigated, the analysis is restricted to CRISPR types I-C and I-E and in Streptococcus to types I-C and II. We found evidence for PAM depletion in Streptococcus phages infecting hosts with CRISPR type I-C, in Vibrio phages infecting hosts with CRISPR type I-E and in Streptococcus thermopilus phages infecting hosts with type II-A, known as CRISPR3. CONCLUSIONS: The observed motif depletion in phages with hosts having CRISPR can be attributed to selection rather than to mutational bias, as mutational bias should affect the phages of all hosts. This observation implies that the CRISPR system has been efficient in the groups discussed here. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/1471-2164-15-663) contains supplementary material, which is available to authorized users. |
format | Online Article Text |
id | pubmed-4246573 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2014 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-42465732014-11-29 Motif depletion in bacteriophages infecting hosts with CRISPR systems Kupczok, Anne Bollback, Jonathan P BMC Genomics Research Article BACKGROUND: CRISPR is a microbial immune system likely to be involved in host-parasite coevolution. It functions using target sequences encoded by the bacterial genome, which interfere with invading nucleic acids using a homology-dependent system. The system also requires protospacer associated motifs (PAMs), short motifs close to the target sequence that are required for interference in CRISPR types I and II. Here, we investigate whether PAMs are depleted in phage genomes due to selection pressure to escape recognition. RESULTS: To this end, we analyzed two data sets. Phages infecting all bacterial hosts were analyzed first, followed by a detailed analysis of phages infecting the genus Streptococcus, where PAMs are best understood. We use two different measures of motif underrepresentation that control for codon bias and the frequency of submotifs. We compare phages infecting species with a particular CRISPR type to those infecting species without that type. Since only known PAMs were investigated, the analysis is restricted to CRISPR types I-C and I-E and in Streptococcus to types I-C and II. We found evidence for PAM depletion in Streptococcus phages infecting hosts with CRISPR type I-C, in Vibrio phages infecting hosts with CRISPR type I-E and in Streptococcus thermopilus phages infecting hosts with type II-A, known as CRISPR3. CONCLUSIONS: The observed motif depletion in phages with hosts having CRISPR can be attributed to selection rather than to mutational bias, as mutational bias should affect the phages of all hosts. This observation implies that the CRISPR system has been efficient in the groups discussed here. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/1471-2164-15-663) contains supplementary material, which is available to authorized users. BioMed Central 2014-08-08 /pmc/articles/PMC4246573/ /pubmed/25103210 http://dx.doi.org/10.1186/1471-2164-15-663 Text en © Kupczok and Bollback; licensee BioMed Central Ltd. 2014 This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. |
spellingShingle | Research Article Kupczok, Anne Bollback, Jonathan P Motif depletion in bacteriophages infecting hosts with CRISPR systems |
title | Motif depletion in bacteriophages infecting hosts with CRISPR systems |
title_full | Motif depletion in bacteriophages infecting hosts with CRISPR systems |
title_fullStr | Motif depletion in bacteriophages infecting hosts with CRISPR systems |
title_full_unstemmed | Motif depletion in bacteriophages infecting hosts with CRISPR systems |
title_short | Motif depletion in bacteriophages infecting hosts with CRISPR systems |
title_sort | motif depletion in bacteriophages infecting hosts with crispr systems |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4246573/ https://www.ncbi.nlm.nih.gov/pubmed/25103210 http://dx.doi.org/10.1186/1471-2164-15-663 |
work_keys_str_mv | AT kupczokanne motifdepletioninbacteriophagesinfectinghostswithcrisprsystems AT bollbackjonathanp motifdepletioninbacteriophagesinfectinghostswithcrisprsystems |