Cargando…
The Wuhan-Zhuhai (WHZH) cohort study of environmental air particulate matter and the pathogenesis of cardiopulmonary diseases: study design, methods and baseline characteristics of the cohort
BACKGROUND: Particulate air pollution has been recognized to be associated with a wide range of adverse health effects, including increased mortality, morbidity, exacerbation of respiratory conditions. However, earlier physiological or pathological changes or long-term bodies’ reaction to air pollut...
Autores principales: | , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4247123/ https://www.ncbi.nlm.nih.gov/pubmed/25252923 http://dx.doi.org/10.1186/1471-2458-14-994 |
Sumario: | BACKGROUND: Particulate air pollution has been recognized to be associated with a wide range of adverse health effects, including increased mortality, morbidity, exacerbation of respiratory conditions. However, earlier physiological or pathological changes or long-term bodies’ reaction to air pollutants have not been studied in depth in China. The Wuhan-Zhuhai (WHZH) cohort study is designed to investigate the association between air pollutants exposure and physiological or pathological reactions on respiratory and cardiovascular system. METHODS/DESIGN: The cohort is a community-based prospective study that includes 4812 individuals aged 18–80 years. The collections of data were conducted from April to May 2011 in Wuhan city and in May 2012 in Zhuhai city. At baseline, data on demographic and socioeconomic information, occupational history, family disease history, lifestyle, cooking mode, daily travel mode, physical activity and living condition have been collected by questionnaires. Participants underwent an extensive physical examination, including anthropometry, spirometry, electrocardiography, and measurements of blood pressure, heart rate, exhaled nitric oxide and carbon monoxide. Potential conditions in the lung, heart, liver, spleen, and skin were synchronously performed. In addition, samples of morning urine, fasting blood serum and plasma were collected during physical health examination. DNA were extracted and were stored at -80°C. Environment concentrations of particulate matter and chemicals were determined for 15 days in each of four seasons. Participants are followed for physiological or pathological changes or incidence of cardiopulmonary diseases every 3 years. DISCUSSION: The results obtained in WHZH cohort study may increase a better understanding of the relationship between particulate air pollution and its components and possible health damages. And the potential mechanisms underlying the development of cardiopulmonary diseases has implications for the development of prevention and treatment strategies. |
---|