Cargando…

Data quality audit of the arthroplasty clinical outcomes registry NSW

BACKGROUND: The Arthroplasty Clinical Outcomes Registry NSW (ACORN) was initiated in 2012. ACORN is a registry piloting within NSW, Australia with several participating hospitals; it aims to monitor patient-centred outcomes and post-surgical complications after total hip and knee arthroplasty. Using...

Descripción completa

Detalles Bibliográficos
Autores principales: Seagrave, Kurt G, Naylor, Justine, Armstrong, Elizabeth, Leong, Kwong-Ming, Descallar, Joseph, Harris, Ian A
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4247213/
https://www.ncbi.nlm.nih.gov/pubmed/25410899
http://dx.doi.org/10.1186/s12913-014-0512-6
_version_ 1782346604059033600
author Seagrave, Kurt G
Naylor, Justine
Armstrong, Elizabeth
Leong, Kwong-Ming
Descallar, Joseph
Harris, Ian A
author_facet Seagrave, Kurt G
Naylor, Justine
Armstrong, Elizabeth
Leong, Kwong-Ming
Descallar, Joseph
Harris, Ian A
author_sort Seagrave, Kurt G
collection PubMed
description BACKGROUND: The Arthroplasty Clinical Outcomes Registry NSW (ACORN) was initiated in 2012. ACORN is a registry piloting within NSW, Australia with several participating hospitals; it aims to monitor patient-centred outcomes and post-surgical complications after total hip and knee arthroplasty. Using retrospective audit methodology, we aimed to investigate the completeness and accuracy of data in ACORN. METHODS: We undertook a reabstracting audit of 100 clinical records of patients who underwent surgery in 2012/2013 (50 each from hospitals A and B). These records represented 27% (100/367) of patient entries in the ACORN registry, all of which were collected at either hospital A or hospital B. Firstly, data completeness was determined by identifying the proportion of missing data in the original data pro forma. Secondly, accuracy of the initial data extraction was determined by comparing these data to reabstracted data collated by an auditor blind to the outcomes of the initial extraction. Inaccuracies were ascertained to be a disagreement between categorical variables and for continuous data, a pre-determined window of error was established. Benchmarks for data completeness and accuracy were set at 95.0%; kappa and intraclass coefficient (ICC) calculations were also utilised to supplement this analysis. In addition, registry completeness (the percentage capture of eligible patients) was also determined as part of the data quality analysis. RESULTS: Completeness and accuracy of submitted datasets were evaluated to be 99.0% (1259/1272) and 94.0% (2159/2296) respectively for Hospital A, and 99.3% (1589/1600) and 96.1% (2444/2542) for Hospital B. The majority of accuracy discrepancies pertained to medical history data. For Hospital A, 57.1% (28/49) of variables met the accuracy benchmark of 95%; 74.5% (38/51) of variables in Hospital B met this benchmark. Of the number of patients eligible for inclusion in the registry, 93.5% (660/706) were found to be included. CONCLUSION: Levels of data completeness and accuracy were found to be high in the submitted datasets for both hospitals. However, important deficits were identified in the accuracy of patient comorbidities. More specific and clear data definitions, and a more thorough examination of medical records would be possible methods to improve the accuracy of deficient areas. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12913-014-0512-6) contains supplementary material, which is available to authorized users.
format Online
Article
Text
id pubmed-4247213
institution National Center for Biotechnology Information
language English
publishDate 2014
publisher BioMed Central
record_format MEDLINE/PubMed
spelling pubmed-42472132014-11-29 Data quality audit of the arthroplasty clinical outcomes registry NSW Seagrave, Kurt G Naylor, Justine Armstrong, Elizabeth Leong, Kwong-Ming Descallar, Joseph Harris, Ian A BMC Health Serv Res Research Article BACKGROUND: The Arthroplasty Clinical Outcomes Registry NSW (ACORN) was initiated in 2012. ACORN is a registry piloting within NSW, Australia with several participating hospitals; it aims to monitor patient-centred outcomes and post-surgical complications after total hip and knee arthroplasty. Using retrospective audit methodology, we aimed to investigate the completeness and accuracy of data in ACORN. METHODS: We undertook a reabstracting audit of 100 clinical records of patients who underwent surgery in 2012/2013 (50 each from hospitals A and B). These records represented 27% (100/367) of patient entries in the ACORN registry, all of which were collected at either hospital A or hospital B. Firstly, data completeness was determined by identifying the proportion of missing data in the original data pro forma. Secondly, accuracy of the initial data extraction was determined by comparing these data to reabstracted data collated by an auditor blind to the outcomes of the initial extraction. Inaccuracies were ascertained to be a disagreement between categorical variables and for continuous data, a pre-determined window of error was established. Benchmarks for data completeness and accuracy were set at 95.0%; kappa and intraclass coefficient (ICC) calculations were also utilised to supplement this analysis. In addition, registry completeness (the percentage capture of eligible patients) was also determined as part of the data quality analysis. RESULTS: Completeness and accuracy of submitted datasets were evaluated to be 99.0% (1259/1272) and 94.0% (2159/2296) respectively for Hospital A, and 99.3% (1589/1600) and 96.1% (2444/2542) for Hospital B. The majority of accuracy discrepancies pertained to medical history data. For Hospital A, 57.1% (28/49) of variables met the accuracy benchmark of 95%; 74.5% (38/51) of variables in Hospital B met this benchmark. Of the number of patients eligible for inclusion in the registry, 93.5% (660/706) were found to be included. CONCLUSION: Levels of data completeness and accuracy were found to be high in the submitted datasets for both hospitals. However, important deficits were identified in the accuracy of patient comorbidities. More specific and clear data definitions, and a more thorough examination of medical records would be possible methods to improve the accuracy of deficient areas. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12913-014-0512-6) contains supplementary material, which is available to authorized users. BioMed Central 2014-11-20 /pmc/articles/PMC4247213/ /pubmed/25410899 http://dx.doi.org/10.1186/s12913-014-0512-6 Text en © Seagrave et al.; licensee BioMed Central Ltd. 2014 This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
spellingShingle Research Article
Seagrave, Kurt G
Naylor, Justine
Armstrong, Elizabeth
Leong, Kwong-Ming
Descallar, Joseph
Harris, Ian A
Data quality audit of the arthroplasty clinical outcomes registry NSW
title Data quality audit of the arthroplasty clinical outcomes registry NSW
title_full Data quality audit of the arthroplasty clinical outcomes registry NSW
title_fullStr Data quality audit of the arthroplasty clinical outcomes registry NSW
title_full_unstemmed Data quality audit of the arthroplasty clinical outcomes registry NSW
title_short Data quality audit of the arthroplasty clinical outcomes registry NSW
title_sort data quality audit of the arthroplasty clinical outcomes registry nsw
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4247213/
https://www.ncbi.nlm.nih.gov/pubmed/25410899
http://dx.doi.org/10.1186/s12913-014-0512-6
work_keys_str_mv AT seagravekurtg dataqualityauditofthearthroplastyclinicaloutcomesregistrynsw
AT naylorjustine dataqualityauditofthearthroplastyclinicaloutcomesregistrynsw
AT armstrongelizabeth dataqualityauditofthearthroplastyclinicaloutcomesregistrynsw
AT leongkwongming dataqualityauditofthearthroplastyclinicaloutcomesregistrynsw
AT descallarjoseph dataqualityauditofthearthroplastyclinicaloutcomesregistrynsw
AT harrisiana dataqualityauditofthearthroplastyclinicaloutcomesregistrynsw