Cargando…
RNA-Seq-Based Transcriptome Analysis of Aflatoxigenic Aspergillus flavus in Response to Water Activity
Aspergillus flavus is one of the most important producers of carcinogenic aflatoxins in crops, and the effect of water activity (a(w)) on growth and aflatoxin production of A. flavus has been previously studied. Here we found the strains under 0.93 a(w) exhibited decreased conidiation and aflatoxin...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4247253/ https://www.ncbi.nlm.nih.gov/pubmed/25421810 http://dx.doi.org/10.3390/toxins6113187 |
_version_ | 1782346610718539776 |
---|---|
author | Zhang, Feng Guo, Zhenni Zhong, Hong Wang, Sen Yang, Weiqiang Liu, Yongfeng Wang, Shihua |
author_facet | Zhang, Feng Guo, Zhenni Zhong, Hong Wang, Sen Yang, Weiqiang Liu, Yongfeng Wang, Shihua |
author_sort | Zhang, Feng |
collection | PubMed |
description | Aspergillus flavus is one of the most important producers of carcinogenic aflatoxins in crops, and the effect of water activity (a(w)) on growth and aflatoxin production of A. flavus has been previously studied. Here we found the strains under 0.93 a(w) exhibited decreased conidiation and aflatoxin biosynthesis compared to that under 0.99 a(w). When RNA-Seq was used to delineate gene expression profile under different water activities, 23,320 non-redundant unigenes, with an average length of 1297 bp, were yielded. By database comparisons, 19,838 unigenes were matched well (e-value < 10(−5)) with known gene sequences, and another 6767 novel unigenes were obtained by comparison to the current genome annotation of A. flavus. Based on the RPKM equation, 5362 differentially expressed unigenes (with |log(2)Ratio| ≥ 1) were identified between 0.99 a(w) and 0.93 a(w) treatments, including 3156 up-regulated and 2206 down-regulated unigenes, suggesting that A. flavus underwent an extensive transcriptome response during water activity variation. Furthermore, we found that the expression of 16 aflatoxin producing-related genes decreased obviously when water activity decreased, and the expression of 11 development-related genes increased after 0.99 a(w) treatment. Our data corroborate a model where water activity affects aflatoxin biosynthesis through increasing the expression of aflatoxin producing-related genes and regulating development-related genes. |
format | Online Article Text |
id | pubmed-4247253 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2014 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-42472532014-12-01 RNA-Seq-Based Transcriptome Analysis of Aflatoxigenic Aspergillus flavus in Response to Water Activity Zhang, Feng Guo, Zhenni Zhong, Hong Wang, Sen Yang, Weiqiang Liu, Yongfeng Wang, Shihua Toxins (Basel) Article Aspergillus flavus is one of the most important producers of carcinogenic aflatoxins in crops, and the effect of water activity (a(w)) on growth and aflatoxin production of A. flavus has been previously studied. Here we found the strains under 0.93 a(w) exhibited decreased conidiation and aflatoxin biosynthesis compared to that under 0.99 a(w). When RNA-Seq was used to delineate gene expression profile under different water activities, 23,320 non-redundant unigenes, with an average length of 1297 bp, were yielded. By database comparisons, 19,838 unigenes were matched well (e-value < 10(−5)) with known gene sequences, and another 6767 novel unigenes were obtained by comparison to the current genome annotation of A. flavus. Based on the RPKM equation, 5362 differentially expressed unigenes (with |log(2)Ratio| ≥ 1) were identified between 0.99 a(w) and 0.93 a(w) treatments, including 3156 up-regulated and 2206 down-regulated unigenes, suggesting that A. flavus underwent an extensive transcriptome response during water activity variation. Furthermore, we found that the expression of 16 aflatoxin producing-related genes decreased obviously when water activity decreased, and the expression of 11 development-related genes increased after 0.99 a(w) treatment. Our data corroborate a model where water activity affects aflatoxin biosynthesis through increasing the expression of aflatoxin producing-related genes and regulating development-related genes. MDPI 2014-11-21 /pmc/articles/PMC4247253/ /pubmed/25421810 http://dx.doi.org/10.3390/toxins6113187 Text en © 2014 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Zhang, Feng Guo, Zhenni Zhong, Hong Wang, Sen Yang, Weiqiang Liu, Yongfeng Wang, Shihua RNA-Seq-Based Transcriptome Analysis of Aflatoxigenic Aspergillus flavus in Response to Water Activity |
title | RNA-Seq-Based Transcriptome Analysis of Aflatoxigenic Aspergillus flavus in Response to Water Activity |
title_full | RNA-Seq-Based Transcriptome Analysis of Aflatoxigenic Aspergillus flavus in Response to Water Activity |
title_fullStr | RNA-Seq-Based Transcriptome Analysis of Aflatoxigenic Aspergillus flavus in Response to Water Activity |
title_full_unstemmed | RNA-Seq-Based Transcriptome Analysis of Aflatoxigenic Aspergillus flavus in Response to Water Activity |
title_short | RNA-Seq-Based Transcriptome Analysis of Aflatoxigenic Aspergillus flavus in Response to Water Activity |
title_sort | rna-seq-based transcriptome analysis of aflatoxigenic aspergillus flavus in response to water activity |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4247253/ https://www.ncbi.nlm.nih.gov/pubmed/25421810 http://dx.doi.org/10.3390/toxins6113187 |
work_keys_str_mv | AT zhangfeng rnaseqbasedtranscriptomeanalysisofaflatoxigenicaspergillusflavusinresponsetowateractivity AT guozhenni rnaseqbasedtranscriptomeanalysisofaflatoxigenicaspergillusflavusinresponsetowateractivity AT zhonghong rnaseqbasedtranscriptomeanalysisofaflatoxigenicaspergillusflavusinresponsetowateractivity AT wangsen rnaseqbasedtranscriptomeanalysisofaflatoxigenicaspergillusflavusinresponsetowateractivity AT yangweiqiang rnaseqbasedtranscriptomeanalysisofaflatoxigenicaspergillusflavusinresponsetowateractivity AT liuyongfeng rnaseqbasedtranscriptomeanalysisofaflatoxigenicaspergillusflavusinresponsetowateractivity AT wangshihua rnaseqbasedtranscriptomeanalysisofaflatoxigenicaspergillusflavusinresponsetowateractivity |