Cargando…

Selective innervation of NK1 receptor–lacking lamina I spinoparabrachial neurons by presumed nonpeptidergic Aδ nociceptors in the rat

Fine myelinated (Aδ) nociceptors are responsible for fast, well-localised pain, but relatively little is known about their postsynaptic targets in the spinal cord, and therefore about their roles in the neuronal circuits that process nociceptive information. Here we show that transganglionically tra...

Descripción completa

Detalles Bibliográficos
Autores principales: Baseer, Najma, Al-Baloushi, Abdullah S., Watanabe, Masahiko, Shehab, Safa A.S., Todd, Andrew J.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Lippincott Williams & Wilkins 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4247378/
https://www.ncbi.nlm.nih.gov/pubmed/25168670
http://dx.doi.org/10.1016/j.pain.2014.08.023
_version_ 1782346628051501056
author Baseer, Najma
Al-Baloushi, Abdullah S.
Watanabe, Masahiko
Shehab, Safa A.S.
Todd, Andrew J.
author_facet Baseer, Najma
Al-Baloushi, Abdullah S.
Watanabe, Masahiko
Shehab, Safa A.S.
Todd, Andrew J.
author_sort Baseer, Najma
collection PubMed
description Fine myelinated (Aδ) nociceptors are responsible for fast, well-localised pain, but relatively little is known about their postsynaptic targets in the spinal cord, and therefore about their roles in the neuronal circuits that process nociceptive information. Here we show that transganglionically transported cholera toxin B subunit (CTb) labels a distinct set of afferents in lamina I that are likely to correspond to Aδ nociceptors, and that most of these lack neuropeptides. The vast majority of lamina I projection neurons can be retrogradely labelled from the lateral parabrachial area, and these can be divided into 2 major groups based on expression of the neurokinin 1 receptor (NK1r). We show that CTb-labelled afferents form contacts on 43% of the spinoparabrachial lamina I neurons that lack the NK1r, but on a significantly smaller proportion (26%) of those that express the receptor. We also confirm with electron microscopy that these contacts are associated with synapses. Among the spinoparabrachial neurons that received contacts from CTb-labelled axons, contact density was considerably higher on NK1r-lacking cells than on those with the NK1r. By comparing the density of CTb contacts with those from other types of glutamatergic bouton, we estimate that nonpeptidergic Aδ nociceptors may provide over half of the excitatory synapses on some NK1r-lacking spinoparabrachial cells. These results provide further evidence that synaptic inputs to dorsal horn projection neurons are organised in a specific way. Taken together with previous studies, they suggest that both NK1r(+) and NK1r-lacking lamina I projection neurons are directly innervated by Aδ nociceptive afferents.
format Online
Article
Text
id pubmed-4247378
institution National Center for Biotechnology Information
language English
publishDate 2014
publisher Lippincott Williams & Wilkins
record_format MEDLINE/PubMed
spelling pubmed-42473782014-12-03 Selective innervation of NK1 receptor–lacking lamina I spinoparabrachial neurons by presumed nonpeptidergic Aδ nociceptors in the rat Baseer, Najma Al-Baloushi, Abdullah S. Watanabe, Masahiko Shehab, Safa A.S. Todd, Andrew J. Pain Article Fine myelinated (Aδ) nociceptors are responsible for fast, well-localised pain, but relatively little is known about their postsynaptic targets in the spinal cord, and therefore about their roles in the neuronal circuits that process nociceptive information. Here we show that transganglionically transported cholera toxin B subunit (CTb) labels a distinct set of afferents in lamina I that are likely to correspond to Aδ nociceptors, and that most of these lack neuropeptides. The vast majority of lamina I projection neurons can be retrogradely labelled from the lateral parabrachial area, and these can be divided into 2 major groups based on expression of the neurokinin 1 receptor (NK1r). We show that CTb-labelled afferents form contacts on 43% of the spinoparabrachial lamina I neurons that lack the NK1r, but on a significantly smaller proportion (26%) of those that express the receptor. We also confirm with electron microscopy that these contacts are associated with synapses. Among the spinoparabrachial neurons that received contacts from CTb-labelled axons, contact density was considerably higher on NK1r-lacking cells than on those with the NK1r. By comparing the density of CTb contacts with those from other types of glutamatergic bouton, we estimate that nonpeptidergic Aδ nociceptors may provide over half of the excitatory synapses on some NK1r-lacking spinoparabrachial cells. These results provide further evidence that synaptic inputs to dorsal horn projection neurons are organised in a specific way. Taken together with previous studies, they suggest that both NK1r(+) and NK1r-lacking lamina I projection neurons are directly innervated by Aδ nociceptive afferents. Lippincott Williams & Wilkins 2014-11 /pmc/articles/PMC4247378/ /pubmed/25168670 http://dx.doi.org/10.1016/j.pain.2014.08.023 Text en © 2014 The Authors https://creativecommons.org/licenses/by/3.0/This work is licensed under a Creative Commons Attribution 3.0 Unported License (https://creativecommons.org/licenses/by/3.0/) .
spellingShingle Article
Baseer, Najma
Al-Baloushi, Abdullah S.
Watanabe, Masahiko
Shehab, Safa A.S.
Todd, Andrew J.
Selective innervation of NK1 receptor–lacking lamina I spinoparabrachial neurons by presumed nonpeptidergic Aδ nociceptors in the rat
title Selective innervation of NK1 receptor–lacking lamina I spinoparabrachial neurons by presumed nonpeptidergic Aδ nociceptors in the rat
title_full Selective innervation of NK1 receptor–lacking lamina I spinoparabrachial neurons by presumed nonpeptidergic Aδ nociceptors in the rat
title_fullStr Selective innervation of NK1 receptor–lacking lamina I spinoparabrachial neurons by presumed nonpeptidergic Aδ nociceptors in the rat
title_full_unstemmed Selective innervation of NK1 receptor–lacking lamina I spinoparabrachial neurons by presumed nonpeptidergic Aδ nociceptors in the rat
title_short Selective innervation of NK1 receptor–lacking lamina I spinoparabrachial neurons by presumed nonpeptidergic Aδ nociceptors in the rat
title_sort selective innervation of nk1 receptor–lacking lamina i spinoparabrachial neurons by presumed nonpeptidergic aδ nociceptors in the rat
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4247378/
https://www.ncbi.nlm.nih.gov/pubmed/25168670
http://dx.doi.org/10.1016/j.pain.2014.08.023
work_keys_str_mv AT baseernajma selectiveinnervationofnk1receptorlackinglaminaispinoparabrachialneuronsbypresumednonpeptidergicadnociceptorsintherat
AT albaloushiabdullahs selectiveinnervationofnk1receptorlackinglaminaispinoparabrachialneuronsbypresumednonpeptidergicadnociceptorsintherat
AT watanabemasahiko selectiveinnervationofnk1receptorlackinglaminaispinoparabrachialneuronsbypresumednonpeptidergicadnociceptorsintherat
AT shehabsafaas selectiveinnervationofnk1receptorlackinglaminaispinoparabrachialneuronsbypresumednonpeptidergicadnociceptorsintherat
AT toddandrewj selectiveinnervationofnk1receptorlackinglaminaispinoparabrachialneuronsbypresumednonpeptidergicadnociceptorsintherat