Cargando…
Heritable variation of mRNA decay rates in yeast
Gene expression levels are determined by the balance between rates of mRNA transcription and decay, and genetic variation in either of these processes can result in heritable differences in transcript abundance. Although the genetics of gene expression has been a subject of intense interest, the con...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Cold Spring Harbor Laboratory Press
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4248316/ https://www.ncbi.nlm.nih.gov/pubmed/25258386 http://dx.doi.org/10.1101/gr.175802.114 |
_version_ | 1782346777614090240 |
---|---|
author | Andrie, Jennifer M. Wakefield, Jon Akey, Joshua M. |
author_facet | Andrie, Jennifer M. Wakefield, Jon Akey, Joshua M. |
author_sort | Andrie, Jennifer M. |
collection | PubMed |
description | Gene expression levels are determined by the balance between rates of mRNA transcription and decay, and genetic variation in either of these processes can result in heritable differences in transcript abundance. Although the genetics of gene expression has been a subject of intense interest, the contribution of heritable variation in mRNA decay rates to gene expression variation has received far less attention. To this end, we developed a novel statistical framework and measured allele-specific differences in mRNA decay rates in a diploid yeast hybrid created by mating two genetically diverse parental strains. We estimate that 31% of genes exhibit allelic differences in mRNA decay rates, of which 350 can be identified at a false discovery rate of 10%. Genes with significant allele-specific differences in mRNA decay rates have higher levels of polymorphism compared to other genes, with all gene regions contributing to allelic differences in mRNA decay rates. Strikingly, we find widespread evidence for compensatory evolution, such that variants influencing transcriptional initiation and decay have opposite effects, suggesting that steady-state gene expression levels are subject to pervasive stabilizing selection. Our results demonstrate that heritable differences in mRNA decay rates are widespread and are an important target for natural selection to maintain or fine-tune steady-state gene expression levels. |
format | Online Article Text |
id | pubmed-4248316 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2014 |
publisher | Cold Spring Harbor Laboratory Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-42483162015-06-01 Heritable variation of mRNA decay rates in yeast Andrie, Jennifer M. Wakefield, Jon Akey, Joshua M. Genome Res Research Gene expression levels are determined by the balance between rates of mRNA transcription and decay, and genetic variation in either of these processes can result in heritable differences in transcript abundance. Although the genetics of gene expression has been a subject of intense interest, the contribution of heritable variation in mRNA decay rates to gene expression variation has received far less attention. To this end, we developed a novel statistical framework and measured allele-specific differences in mRNA decay rates in a diploid yeast hybrid created by mating two genetically diverse parental strains. We estimate that 31% of genes exhibit allelic differences in mRNA decay rates, of which 350 can be identified at a false discovery rate of 10%. Genes with significant allele-specific differences in mRNA decay rates have higher levels of polymorphism compared to other genes, with all gene regions contributing to allelic differences in mRNA decay rates. Strikingly, we find widespread evidence for compensatory evolution, such that variants influencing transcriptional initiation and decay have opposite effects, suggesting that steady-state gene expression levels are subject to pervasive stabilizing selection. Our results demonstrate that heritable differences in mRNA decay rates are widespread and are an important target for natural selection to maintain or fine-tune steady-state gene expression levels. Cold Spring Harbor Laboratory Press 2014-12 /pmc/articles/PMC4248316/ /pubmed/25258386 http://dx.doi.org/10.1101/gr.175802.114 Text en © 2014 Andrie et al.; Published by Cold Spring Harbor Laboratory Press http://creativecommons.org/licenses/by-nc/4.0/ This article is distributed exclusively by Cold Spring Harbor Laboratory Press for the first six months after the full-issue publication date (see http://genome.cshlp.org/site/misc/terms.xhtml). After six months, it is available under a Creative Commons License (Attribution-NonCommercial 4.0 International), as described at http://creativecommons.org/licenses/by-nc/4.0/. |
spellingShingle | Research Andrie, Jennifer M. Wakefield, Jon Akey, Joshua M. Heritable variation of mRNA decay rates in yeast |
title | Heritable variation of mRNA decay rates in yeast |
title_full | Heritable variation of mRNA decay rates in yeast |
title_fullStr | Heritable variation of mRNA decay rates in yeast |
title_full_unstemmed | Heritable variation of mRNA decay rates in yeast |
title_short | Heritable variation of mRNA decay rates in yeast |
title_sort | heritable variation of mrna decay rates in yeast |
topic | Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4248316/ https://www.ncbi.nlm.nih.gov/pubmed/25258386 http://dx.doi.org/10.1101/gr.175802.114 |
work_keys_str_mv | AT andriejenniferm heritablevariationofmrnadecayratesinyeast AT wakefieldjon heritablevariationofmrnadecayratesinyeast AT akeyjoshuam heritablevariationofmrnadecayratesinyeast |