Cargando…
Artificial Neural Network classification of operator workload with an assessment of time variation and noise-enhancement to increase performance
Workload classification—the determination of whether a human operator is in a high or low workload state to allow their working environment to be optimized—is an emerging application of passive Brain-Computer Interface (BCI) systems. Practical systems must not only accurately detect the current work...
Autor principal: | Casson, Alexander J. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4248840/ https://www.ncbi.nlm.nih.gov/pubmed/25520608 http://dx.doi.org/10.3389/fnins.2014.00372 |
Ejemplares similares
-
Working With Environmental Noise and Noise-Cancelation: A Workload Assessment With EEG and Subjective Measures
por: Pieper, Kerstin, et al.
Publicado: (2021) -
Theories and Methods for Labeling Cognitive Workload: Classification and Transfer Learning
por: McKendrick, Ryan, et al.
Publicado: (2019) -
Efficient Workload Classification based on Ignored Auditory Probes: A Proof of Concept
por: Roy, Raphaëlle N., et al.
Publicado: (2016) -
A Neuroergonomics Approach to Mental Workload, Engagement and Human Performance
por: Dehais, Frédéric, et al.
Publicado: (2020) -
Neural Correlates of Workload Transition in Multitasking: An ACT-R Model of Hysteresis Effect
por: Kim, Na Young, et al.
Publicado: (2019)