Cargando…
Predicting genome-scale Arabidopsis-Pseudomonas syringae interactome using domain and interolog-based approaches
BACKGROUND: Every year pathogenic organisms cause billions of dollars' worth damage to crops and livestock. In agriculture, study of plant-microbe interactions is demanding a special attention to develop management strategies for the destructive pathogen induced diseases that cause huge crop lo...
Autores principales: | Sahu, Sitanshu S, Weirick, Tyler, Kaundal, Rakesh |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4251041/ https://www.ncbi.nlm.nih.gov/pubmed/25350354 http://dx.doi.org/10.1186/1471-2105-15-S11-S13 |
Ejemplares similares
-
LacSubPred: predicting subtypes of Laccases, an important lignin metabolism-related enzyme class, using in silico approaches
por: Weirick, Tyler, et al.
Publicado: (2014) -
Identification and characterization of plastid-type proteins from sequence-attributed features using machine learning
por: Kaundal, Rakesh, et al.
Publicado: (2013) -
AIM: a comprehensive Arabidopsis interactome module database and related interologs in plants
por: Wang, Yi, et al.
Publicado: (2014) -
Prediction of cassava protein interactome based on interolog method
por: Thanasomboon, Ratana, et al.
Publicado: (2017) -
Inferring a protein interaction map of Mycobacterium tuberculosis based on sequences and interologs
por: Liu, Zhi-Ping, et al.
Publicado: (2012)