Cargando…
Improving protein fold recognition by random forest
BACKGROUND: Recognizing the correct structural fold among known template protein structures for a target protein (i.e. fold recognition) is essential for template-based protein structure modeling. Since the fold recognition problem can be defined as a binary classification problem of predicting whet...
Autores principales: | Jo, Taeho, Cheng, Jianlin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4251042/ https://www.ncbi.nlm.nih.gov/pubmed/25350499 http://dx.doi.org/10.1186/1471-2105-15-S11-S14 |
Ejemplares similares
-
Improving Protein Fold Recognition by Deep Learning Networks
por: Jo, Taeho, et al.
Publicado: (2015) -
SVM-Fold: a tool for discriminative multi-class protein fold and superfamily recognition
por: Melvin, Iain, et al.
Publicado: (2007) -
SeqRate: sequence-based protein folding type classification and rates prediction
por: Lin, Guan Ning, et al.
Publicado: (2010) -
Protein folding in HP model on hexagonal lattices with diagonals
por: Shaw, Dipan Lal, et al.
Publicado: (2014) -
Mapping complex traits using Random Forests
por: Bureau, Alexandre, et al.
Publicado: (2003)