Cargando…
An Efficient Diagnosis System for Parkinson's Disease Using Kernel-Based Extreme Learning Machine with Subtractive Clustering Features Weighting Approach
A novel hybrid method named SCFW-KELM, which integrates effective subtractive clustering features weighting and a fast classifier kernel-based extreme learning machine (KELM), has been introduced for the diagnosis of PD. In the proposed method, SCFW is used as a data preprocessing tool, which aims a...
Autores principales: | Ma, Chao, Ouyang, Jihong, Chen, Hui-Ling, Zhao, Xue-Hua |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi Publishing Corporation
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4251425/ https://www.ncbi.nlm.nih.gov/pubmed/25484912 http://dx.doi.org/10.1155/2014/985789 |
Ejemplares similares
-
An Expert Diagnosis System for Parkinson Disease Based on Genetic Algorithm-Wavelet Kernel-Extreme Learning Machine
por: Avci, Derya, et al.
Publicado: (2016) -
An Enhanced Grey Wolf Optimization Based Feature Selection Wrapped Kernel Extreme Learning Machine for Medical Diagnosis
por: Li, Qiang, et al.
Publicado: (2017) -
An Adaptive Background Subtraction Method Based on Kernel Density Estimation
por: Lee, Jeisung, et al.
Publicado: (2012) -
Weighted Mutual Information for Aggregated Kernel Clustering
por: Kachouie, Nezamoddin N., et al.
Publicado: (2020) -
Alumina Concentration Detection Based on the Kernel Extreme Learning Machine
por: Zhang, Sen, et al.
Publicado: (2017)