Cargando…
FOXP1 inhibits cell growth and attenuates tumorigenicity of neuroblastoma
BACKGROUND: Segmental genomic copy number alterations, such as loss of 11q or 3p and gain of 17q, are well established markers of poor outcome in neuroblastoma, and have been suggested to comprise tumor suppressor genes or oncogenes, respectively. The gene forkhead box P1 (FOXP1) maps to chromosome...
Autores principales: | , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4251948/ https://www.ncbi.nlm.nih.gov/pubmed/25406647 http://dx.doi.org/10.1186/1471-2407-14-840 |
_version_ | 1782347122364907520 |
---|---|
author | Ackermann, Sandra Kocak, Hayriye Hero, Barbara Ehemann, Volker Kahlert, Yvonne Oberthuer, André Roels, Frederik Theißen, Jessica Odenthal, Margarete Berthold, Frank Fischer, Matthias |
author_facet | Ackermann, Sandra Kocak, Hayriye Hero, Barbara Ehemann, Volker Kahlert, Yvonne Oberthuer, André Roels, Frederik Theißen, Jessica Odenthal, Margarete Berthold, Frank Fischer, Matthias |
author_sort | Ackermann, Sandra |
collection | PubMed |
description | BACKGROUND: Segmental genomic copy number alterations, such as loss of 11q or 3p and gain of 17q, are well established markers of poor outcome in neuroblastoma, and have been suggested to comprise tumor suppressor genes or oncogenes, respectively. The gene forkhead box P1 (FOXP1) maps to chromosome 3p14.1, a tumor suppressor locus deleted in many human cancers including neuroblastoma. FoxP1 belongs to a family of winged-helix transcription factors that are involved in processes of cellular proliferation, differentiation and neoplastic transformation. METHODS: Microarray expression profiles of 476 neuroblastoma specimens were generated and genes differentially expressed between favorable and unfavorable neuroblastoma were identified. FOXP1 expression was correlated to clinical markers and patient outcome. To determine whether hypermethylation is involved in silencing of FOXP1, methylation analysis of the 5′ region of FOXP1 in 47 neuroblastomas was performed. Furthermore, FOXP1 was re-expressed in three neuroblastoma cell lines to study the effect of FOXP1 on growth characteristics of neuroblastoma cells. RESULTS: Low expression of FOXP1 is associated with markers of unfavorable prognosis like stage 4, age >18 months and MYCN amplification and unfavorable gene expression-based classification (P < 0.001 each). Moreover, FOXP1 expression predicts patient outcome accurately and independently from well-established prognostic markers. Array-based CGH analysis of 159 neuroblastomas revealed that heterozygous loss of the FOXP1 locus was a rare event (n = 4), but if present, was associated with low FOXP1 expression. By contrast, DNA methylation analysis in 47 neuroblastomas indicated that hypermethylation is not regularly involved in FOXP1 gene silencing. Re-expression of FoxP1 significantly impaired cell proliferation, viability and colony formation in soft agar. Furthermore, induction of FOXP1 expression led to cell cycle arrest and apoptotic cell death of neuroblastoma cells. CONCLUSIONS: Our results suggest that down-regulation of FOXP1 expression is a common event in high-risk neuroblastoma pathogenesis and may contribute to tumor progression and unfavorable patient outcome. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/1471-2407-14-840) contains supplementary material, which is available to authorized users. |
format | Online Article Text |
id | pubmed-4251948 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2014 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-42519482014-12-03 FOXP1 inhibits cell growth and attenuates tumorigenicity of neuroblastoma Ackermann, Sandra Kocak, Hayriye Hero, Barbara Ehemann, Volker Kahlert, Yvonne Oberthuer, André Roels, Frederik Theißen, Jessica Odenthal, Margarete Berthold, Frank Fischer, Matthias BMC Cancer Research Article BACKGROUND: Segmental genomic copy number alterations, such as loss of 11q or 3p and gain of 17q, are well established markers of poor outcome in neuroblastoma, and have been suggested to comprise tumor suppressor genes or oncogenes, respectively. The gene forkhead box P1 (FOXP1) maps to chromosome 3p14.1, a tumor suppressor locus deleted in many human cancers including neuroblastoma. FoxP1 belongs to a family of winged-helix transcription factors that are involved in processes of cellular proliferation, differentiation and neoplastic transformation. METHODS: Microarray expression profiles of 476 neuroblastoma specimens were generated and genes differentially expressed between favorable and unfavorable neuroblastoma were identified. FOXP1 expression was correlated to clinical markers and patient outcome. To determine whether hypermethylation is involved in silencing of FOXP1, methylation analysis of the 5′ region of FOXP1 in 47 neuroblastomas was performed. Furthermore, FOXP1 was re-expressed in three neuroblastoma cell lines to study the effect of FOXP1 on growth characteristics of neuroblastoma cells. RESULTS: Low expression of FOXP1 is associated with markers of unfavorable prognosis like stage 4, age >18 months and MYCN amplification and unfavorable gene expression-based classification (P < 0.001 each). Moreover, FOXP1 expression predicts patient outcome accurately and independently from well-established prognostic markers. Array-based CGH analysis of 159 neuroblastomas revealed that heterozygous loss of the FOXP1 locus was a rare event (n = 4), but if present, was associated with low FOXP1 expression. By contrast, DNA methylation analysis in 47 neuroblastomas indicated that hypermethylation is not regularly involved in FOXP1 gene silencing. Re-expression of FoxP1 significantly impaired cell proliferation, viability and colony formation in soft agar. Furthermore, induction of FOXP1 expression led to cell cycle arrest and apoptotic cell death of neuroblastoma cells. CONCLUSIONS: Our results suggest that down-regulation of FOXP1 expression is a common event in high-risk neuroblastoma pathogenesis and may contribute to tumor progression and unfavorable patient outcome. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/1471-2407-14-840) contains supplementary material, which is available to authorized users. BioMed Central 2014-11-18 /pmc/articles/PMC4251948/ /pubmed/25406647 http://dx.doi.org/10.1186/1471-2407-14-840 Text en © Ackermann et al.; licensee BioMed Central Ltd. 2014 This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. |
spellingShingle | Research Article Ackermann, Sandra Kocak, Hayriye Hero, Barbara Ehemann, Volker Kahlert, Yvonne Oberthuer, André Roels, Frederik Theißen, Jessica Odenthal, Margarete Berthold, Frank Fischer, Matthias FOXP1 inhibits cell growth and attenuates tumorigenicity of neuroblastoma |
title | FOXP1 inhibits cell growth and attenuates tumorigenicity of neuroblastoma |
title_full | FOXP1 inhibits cell growth and attenuates tumorigenicity of neuroblastoma |
title_fullStr | FOXP1 inhibits cell growth and attenuates tumorigenicity of neuroblastoma |
title_full_unstemmed | FOXP1 inhibits cell growth and attenuates tumorigenicity of neuroblastoma |
title_short | FOXP1 inhibits cell growth and attenuates tumorigenicity of neuroblastoma |
title_sort | foxp1 inhibits cell growth and attenuates tumorigenicity of neuroblastoma |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4251948/ https://www.ncbi.nlm.nih.gov/pubmed/25406647 http://dx.doi.org/10.1186/1471-2407-14-840 |
work_keys_str_mv | AT ackermannsandra foxp1inhibitscellgrowthandattenuatestumorigenicityofneuroblastoma AT kocakhayriye foxp1inhibitscellgrowthandattenuatestumorigenicityofneuroblastoma AT herobarbara foxp1inhibitscellgrowthandattenuatestumorigenicityofneuroblastoma AT ehemannvolker foxp1inhibitscellgrowthandattenuatestumorigenicityofneuroblastoma AT kahlertyvonne foxp1inhibitscellgrowthandattenuatestumorigenicityofneuroblastoma AT oberthuerandre foxp1inhibitscellgrowthandattenuatestumorigenicityofneuroblastoma AT roelsfrederik foxp1inhibitscellgrowthandattenuatestumorigenicityofneuroblastoma AT theißenjessica foxp1inhibitscellgrowthandattenuatestumorigenicityofneuroblastoma AT odenthalmargarete foxp1inhibitscellgrowthandattenuatestumorigenicityofneuroblastoma AT bertholdfrank foxp1inhibitscellgrowthandattenuatestumorigenicityofneuroblastoma AT fischermatthias foxp1inhibitscellgrowthandattenuatestumorigenicityofneuroblastoma |