Cargando…
Evaluating Population Receptive Field Estimation Frameworks in Terms of Robustness and Reproducibility
Within vision research retinotopic mapping and the more general receptive field estimation approach constitute not only an active field of research in itself but also underlie a plethora of interesting applications. This necessitates not only good estimation of population receptive fields (pRFs) but...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4252088/ https://www.ncbi.nlm.nih.gov/pubmed/25463652 http://dx.doi.org/10.1371/journal.pone.0114054 |
_version_ | 1782347149157072896 |
---|---|
author | Senden, Mario Reithler, Joel Gijsen, Sven Goebel, Rainer |
author_facet | Senden, Mario Reithler, Joel Gijsen, Sven Goebel, Rainer |
author_sort | Senden, Mario |
collection | PubMed |
description | Within vision research retinotopic mapping and the more general receptive field estimation approach constitute not only an active field of research in itself but also underlie a plethora of interesting applications. This necessitates not only good estimation of population receptive fields (pRFs) but also that these receptive fields are consistent across time rather than dynamically changing. It is therefore of interest to maximize the accuracy with which population receptive fields can be estimated in a functional magnetic resonance imaging (fMRI) setting. This, in turn, requires an adequate estimation framework providing the data for population receptive field mapping. More specifically, adequate decisions with regard to stimulus choice and mode of presentation need to be made. Additionally, it needs to be evaluated whether the stimulation protocol should entail mean luminance periods and whether it is advantageous to average the blood oxygenation level dependent (BOLD) signal across stimulus cycles or not. By systematically studying the effects of these decisions on pRF estimates in an empirical as well as simulation setting we come to the conclusion that a bar stimulus presented at random positions and interspersed with mean luminance periods is generally most favorable. Finally, using this optimal estimation framework we furthermore tested the assumption of temporal consistency of population receptive fields. We show that the estimation of pRFs from two temporally separated sessions leads to highly similar pRF parameters. |
format | Online Article Text |
id | pubmed-4252088 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2014 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-42520882014-12-05 Evaluating Population Receptive Field Estimation Frameworks in Terms of Robustness and Reproducibility Senden, Mario Reithler, Joel Gijsen, Sven Goebel, Rainer PLoS One Research Article Within vision research retinotopic mapping and the more general receptive field estimation approach constitute not only an active field of research in itself but also underlie a plethora of interesting applications. This necessitates not only good estimation of population receptive fields (pRFs) but also that these receptive fields are consistent across time rather than dynamically changing. It is therefore of interest to maximize the accuracy with which population receptive fields can be estimated in a functional magnetic resonance imaging (fMRI) setting. This, in turn, requires an adequate estimation framework providing the data for population receptive field mapping. More specifically, adequate decisions with regard to stimulus choice and mode of presentation need to be made. Additionally, it needs to be evaluated whether the stimulation protocol should entail mean luminance periods and whether it is advantageous to average the blood oxygenation level dependent (BOLD) signal across stimulus cycles or not. By systematically studying the effects of these decisions on pRF estimates in an empirical as well as simulation setting we come to the conclusion that a bar stimulus presented at random positions and interspersed with mean luminance periods is generally most favorable. Finally, using this optimal estimation framework we furthermore tested the assumption of temporal consistency of population receptive fields. We show that the estimation of pRFs from two temporally separated sessions leads to highly similar pRF parameters. Public Library of Science 2014-12-02 /pmc/articles/PMC4252088/ /pubmed/25463652 http://dx.doi.org/10.1371/journal.pone.0114054 Text en © 2014 Senden et al http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. |
spellingShingle | Research Article Senden, Mario Reithler, Joel Gijsen, Sven Goebel, Rainer Evaluating Population Receptive Field Estimation Frameworks in Terms of Robustness and Reproducibility |
title | Evaluating Population Receptive Field Estimation Frameworks in Terms of Robustness and Reproducibility |
title_full | Evaluating Population Receptive Field Estimation Frameworks in Terms of Robustness and Reproducibility |
title_fullStr | Evaluating Population Receptive Field Estimation Frameworks in Terms of Robustness and Reproducibility |
title_full_unstemmed | Evaluating Population Receptive Field Estimation Frameworks in Terms of Robustness and Reproducibility |
title_short | Evaluating Population Receptive Field Estimation Frameworks in Terms of Robustness and Reproducibility |
title_sort | evaluating population receptive field estimation frameworks in terms of robustness and reproducibility |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4252088/ https://www.ncbi.nlm.nih.gov/pubmed/25463652 http://dx.doi.org/10.1371/journal.pone.0114054 |
work_keys_str_mv | AT sendenmario evaluatingpopulationreceptivefieldestimationframeworksintermsofrobustnessandreproducibility AT reithlerjoel evaluatingpopulationreceptivefieldestimationframeworksintermsofrobustnessandreproducibility AT gijsensven evaluatingpopulationreceptivefieldestimationframeworksintermsofrobustnessandreproducibility AT goebelrainer evaluatingpopulationreceptivefieldestimationframeworksintermsofrobustnessandreproducibility |