Cargando…
Wave instabilities in the presence of non vanishing background in nonlinear Schrödinger systems
We investigate wave collapse ruled by the generalized nonlinear Schrödinger (NLS) equation in 1+1 dimensions, for localized excitations with non-zero background, establishing through virial identities a new criterion for blow-up. When collapse is arrested, a semiclassical approach allows us to show...
Autores principales: | Trillo, S., Gongora, J. S. Totero, Fratalocchi, A. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4252897/ https://www.ncbi.nlm.nih.gov/pubmed/25468032 http://dx.doi.org/10.1038/srep07285 |
Ejemplares similares
-
Dispersive equations and nonlinear waves: generalized Korteweg–de Vries, nonlinear Schrödinger, wave and Schrödinger maps
por: Koch, Herbert, et al.
Publicado: (2014) -
Some anomalous exact solutions for the four-component coupled nonlinear Schrödinger equations on complex wave backgrounds
por: Wang, Lu, et al.
Publicado: (2022) -
Schrödinger equations in nonlinear systems
por: Liu, Wu-Ming, et al.
Publicado: (2019) -
Nonlinear field-control of terahertz waves in random media for spatiotemporal focusing
por: Cecconi, Vittorio, et al.
Publicado: (2023) -
Discrete and continuous nonlinear Schrödinger systems
por: Ablowitz, M J, et al.
Publicado: (2003)