Cargando…
Evaluating the effect of assay preparation on the uptake of gold nanoparticles by RAW264.7 cells
BACKGROUND: Cell culture conditions can greatly influence the results of nanoparticle (NP) uptake assays. In this study, 10 nm gold nanoparticles (AuNPs) and RAW 264.7 macrophages were used as a model system, while instrumental neutron activation analysis (NAA) was used as the elemental analysis tec...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4253004/ https://www.ncbi.nlm.nih.gov/pubmed/25424488 http://dx.doi.org/10.1186/s12951-014-0045-5 |
Sumario: | BACKGROUND: Cell culture conditions can greatly influence the results of nanoparticle (NP) uptake assays. In this study, 10 nm gold nanoparticles (AuNPs) and RAW 264.7 macrophages were used as a model system, while instrumental neutron activation analysis (NAA) was used as the elemental analysis technique to determine AuNP levels produced by the various culturing conditions. Static plate-based and insert-based culture conditions were compared with a dynamic suspension culture to evaluate the conditions’ effect on the rate and extent of AuNP uptake. RESULTS: The results indicate that a dynamic culturing condition allows for the greatest NP uptake (approximately 3-5 times over the adherent conditions), whereas the plate-based assays have the initial highest rate of NP incorporation. CONCLUSIONS: These data highlight the importance of judiciously choosing the assay conditions prior to evaluating NP uptake. |
---|