Cargando…
Binding of a Smad4/Ets-1 complex to a novel intragenic regulatory element in exon12 of FPGS underlies decreased gene expression and antifolate resistance in leukemia
Polyglutamylation of antifolates catalyzed by folylpoly-γ-glutamate synthetase (FPGS) is essential for their intracellular retention and cytotoxic activity. Hence, loss of FPGS expression and/or function results in lack of antifolate polyglutamylation and drug resistance. Members of the TGF-β/Smad s...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Impact Journals LLC
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4253427/ https://www.ncbi.nlm.nih.gov/pubmed/25229333 |
_version_ | 1782347255630528512 |
---|---|
author | Raz, Shachar Stark, Michal Assaraf, Yehuda G. |
author_facet | Raz, Shachar Stark, Michal Assaraf, Yehuda G. |
author_sort | Raz, Shachar |
collection | PubMed |
description | Polyglutamylation of antifolates catalyzed by folylpoly-γ-glutamate synthetase (FPGS) is essential for their intracellular retention and cytotoxic activity. Hence, loss of FPGS expression and/or function results in lack of antifolate polyglutamylation and drug resistance. Members of the TGF-β/Smad signaling pathway are negative regulators of hematopoiesis and deregulation of this pathway is considered a major contributor to leukemogenesis. Here we show that FPGS gene expression is inversely correlated with the binding of a Smad4/Ets-1 complex to exon12 of FPGS in both acute lymphoblastic leukemia cells and acute myeloid leukemia blast specimens. We demonstrate that antifolate resistant leukemia cells harbor a heterozygous point mutation in exon12 of FPGS which disrupts FPGS activity by abolishing ATP binding, and alters the binding pattern of transcription factors to the genomic region of exon12. This in turn results in the near complete silencing of the wild type allele leading to a 97% loss of FPGS activity. We show that exon12 is a novel intragenic transcriptional regulator, endowed with the ability to drive transcription in vitro, and is occupied by transcription factors and chromatin remodeling agents (e.g. Smad4/Ets-1, HP-1 and Brg1) in vivo. These findings bear important implications for the rational overcoming of antifolate resistance in leukemia. |
format | Online Article Text |
id | pubmed-4253427 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2014 |
publisher | Impact Journals LLC |
record_format | MEDLINE/PubMed |
spelling | pubmed-42534272014-12-03 Binding of a Smad4/Ets-1 complex to a novel intragenic regulatory element in exon12 of FPGS underlies decreased gene expression and antifolate resistance in leukemia Raz, Shachar Stark, Michal Assaraf, Yehuda G. Oncotarget Research Paper Polyglutamylation of antifolates catalyzed by folylpoly-γ-glutamate synthetase (FPGS) is essential for their intracellular retention and cytotoxic activity. Hence, loss of FPGS expression and/or function results in lack of antifolate polyglutamylation and drug resistance. Members of the TGF-β/Smad signaling pathway are negative regulators of hematopoiesis and deregulation of this pathway is considered a major contributor to leukemogenesis. Here we show that FPGS gene expression is inversely correlated with the binding of a Smad4/Ets-1 complex to exon12 of FPGS in both acute lymphoblastic leukemia cells and acute myeloid leukemia blast specimens. We demonstrate that antifolate resistant leukemia cells harbor a heterozygous point mutation in exon12 of FPGS which disrupts FPGS activity by abolishing ATP binding, and alters the binding pattern of transcription factors to the genomic region of exon12. This in turn results in the near complete silencing of the wild type allele leading to a 97% loss of FPGS activity. We show that exon12 is a novel intragenic transcriptional regulator, endowed with the ability to drive transcription in vitro, and is occupied by transcription factors and chromatin remodeling agents (e.g. Smad4/Ets-1, HP-1 and Brg1) in vivo. These findings bear important implications for the rational overcoming of antifolate resistance in leukemia. Impact Journals LLC 2014-08-27 /pmc/articles/PMC4253427/ /pubmed/25229333 Text en Copyright: © 2014 Raz et al. http://creativecommons.org/licenses/by/2.5/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. |
spellingShingle | Research Paper Raz, Shachar Stark, Michal Assaraf, Yehuda G. Binding of a Smad4/Ets-1 complex to a novel intragenic regulatory element in exon12 of FPGS underlies decreased gene expression and antifolate resistance in leukemia |
title | Binding of a Smad4/Ets-1 complex to a novel intragenic regulatory element in exon12 of FPGS underlies decreased gene expression and antifolate resistance in leukemia |
title_full | Binding of a Smad4/Ets-1 complex to a novel intragenic regulatory element in exon12 of FPGS underlies decreased gene expression and antifolate resistance in leukemia |
title_fullStr | Binding of a Smad4/Ets-1 complex to a novel intragenic regulatory element in exon12 of FPGS underlies decreased gene expression and antifolate resistance in leukemia |
title_full_unstemmed | Binding of a Smad4/Ets-1 complex to a novel intragenic regulatory element in exon12 of FPGS underlies decreased gene expression and antifolate resistance in leukemia |
title_short | Binding of a Smad4/Ets-1 complex to a novel intragenic regulatory element in exon12 of FPGS underlies decreased gene expression and antifolate resistance in leukemia |
title_sort | binding of a smad4/ets-1 complex to a novel intragenic regulatory element in exon12 of fpgs underlies decreased gene expression and antifolate resistance in leukemia |
topic | Research Paper |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4253427/ https://www.ncbi.nlm.nih.gov/pubmed/25229333 |
work_keys_str_mv | AT razshachar bindingofasmad4ets1complextoanovelintragenicregulatoryelementinexon12offpgsunderliesdecreasedgeneexpressionandantifolateresistanceinleukemia AT starkmichal bindingofasmad4ets1complextoanovelintragenicregulatoryelementinexon12offpgsunderliesdecreasedgeneexpressionandantifolateresistanceinleukemia AT assarafyehudag bindingofasmad4ets1complextoanovelintragenicregulatoryelementinexon12offpgsunderliesdecreasedgeneexpressionandantifolateresistanceinleukemia |