Cargando…
Na(+) current properties in islet α- and β-cells reflect cell-specific Scn3a and Scn9a expression
Mouse pancreatic β- and α-cells are equipped with voltage-gated Na(+) currents that inactivate over widely different membrane potentials (half-maximal inactivation (V(0.5)) at −100 mV and −50 mV in β- and α-cells, respectively). Single-cell PCR analyses show that both α- and β-cells have Na(v)1.3 (S...
Autores principales: | , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BlackWell Publishing Ltd
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4253470/ https://www.ncbi.nlm.nih.gov/pubmed/25172946 http://dx.doi.org/10.1113/jphysiol.2014.274209 |
_version_ | 1782347261088366592 |
---|---|
author | Zhang, Quan Chibalina, Margarita V Bengtsson, Martin Groschner, Lukas N Ramracheya, Reshma Rorsman, Nils J G Leiss, Veronika Nassar, Mohammed A Welling, Andrea Gribble, Fiona M Reimann, Frank Hofmann, Franz Wood, John N Ashcroft, Frances M Rorsman, Patrik |
author_facet | Zhang, Quan Chibalina, Margarita V Bengtsson, Martin Groschner, Lukas N Ramracheya, Reshma Rorsman, Nils J G Leiss, Veronika Nassar, Mohammed A Welling, Andrea Gribble, Fiona M Reimann, Frank Hofmann, Franz Wood, John N Ashcroft, Frances M Rorsman, Patrik |
author_sort | Zhang, Quan |
collection | PubMed |
description | Mouse pancreatic β- and α-cells are equipped with voltage-gated Na(+) currents that inactivate over widely different membrane potentials (half-maximal inactivation (V(0.5)) at −100 mV and −50 mV in β- and α-cells, respectively). Single-cell PCR analyses show that both α- and β-cells have Na(v)1.3 (Scn3) and Na(v)1.7 (Scn9a) α subunits, but their relative proportions differ: β-cells principally express Na(v)1.7 and α-cells Na(v)1.3. In α-cells, genetically ablating Scn3a reduces the Na(+) current by 80%. In β-cells, knockout of Scn9a lowers the Na(+) current by >85%, unveiling a small Scn3a-dependent component. Glucagon and insulin secretion are inhibited in Scn3a(−/−) islets but unaffected in Scn9a-deficient islets. Thus, Na(v)1.3 is the functionally important Na(+) channel α subunit in both α- and β-cells because Na(v)1.7 is largely inactive at physiological membrane potentials due to its unusually negative voltage dependence of inactivation. Interestingly, the Na(v)1.7 sequence in brain and islets is identical and yet the V(0.5) for inactivation is >30 mV more negative in β-cells. This may indicate the presence of an intracellular factor that modulates the voltage dependence of inactivation. |
format | Online Article Text |
id | pubmed-4253470 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2014 |
publisher | BlackWell Publishing Ltd |
record_format | MEDLINE/PubMed |
spelling | pubmed-42534702015-03-30 Na(+) current properties in islet α- and β-cells reflect cell-specific Scn3a and Scn9a expression Zhang, Quan Chibalina, Margarita V Bengtsson, Martin Groschner, Lukas N Ramracheya, Reshma Rorsman, Nils J G Leiss, Veronika Nassar, Mohammed A Welling, Andrea Gribble, Fiona M Reimann, Frank Hofmann, Franz Wood, John N Ashcroft, Frances M Rorsman, Patrik J Physiol Molecular and Cellular Mouse pancreatic β- and α-cells are equipped with voltage-gated Na(+) currents that inactivate over widely different membrane potentials (half-maximal inactivation (V(0.5)) at −100 mV and −50 mV in β- and α-cells, respectively). Single-cell PCR analyses show that both α- and β-cells have Na(v)1.3 (Scn3) and Na(v)1.7 (Scn9a) α subunits, but their relative proportions differ: β-cells principally express Na(v)1.7 and α-cells Na(v)1.3. In α-cells, genetically ablating Scn3a reduces the Na(+) current by 80%. In β-cells, knockout of Scn9a lowers the Na(+) current by >85%, unveiling a small Scn3a-dependent component. Glucagon and insulin secretion are inhibited in Scn3a(−/−) islets but unaffected in Scn9a-deficient islets. Thus, Na(v)1.3 is the functionally important Na(+) channel α subunit in both α- and β-cells because Na(v)1.7 is largely inactive at physiological membrane potentials due to its unusually negative voltage dependence of inactivation. Interestingly, the Na(v)1.7 sequence in brain and islets is identical and yet the V(0.5) for inactivation is >30 mV more negative in β-cells. This may indicate the presence of an intracellular factor that modulates the voltage dependence of inactivation. BlackWell Publishing Ltd 2014-11-01 2014-10-31 /pmc/articles/PMC4253470/ /pubmed/25172946 http://dx.doi.org/10.1113/jphysiol.2014.274209 Text en © 2014 The Authors. The Journal of Physiology © 2014 The Physiological Society |
spellingShingle | Molecular and Cellular Zhang, Quan Chibalina, Margarita V Bengtsson, Martin Groschner, Lukas N Ramracheya, Reshma Rorsman, Nils J G Leiss, Veronika Nassar, Mohammed A Welling, Andrea Gribble, Fiona M Reimann, Frank Hofmann, Franz Wood, John N Ashcroft, Frances M Rorsman, Patrik Na(+) current properties in islet α- and β-cells reflect cell-specific Scn3a and Scn9a expression |
title | Na(+) current properties in islet α- and β-cells reflect cell-specific Scn3a and Scn9a expression |
title_full | Na(+) current properties in islet α- and β-cells reflect cell-specific Scn3a and Scn9a expression |
title_fullStr | Na(+) current properties in islet α- and β-cells reflect cell-specific Scn3a and Scn9a expression |
title_full_unstemmed | Na(+) current properties in islet α- and β-cells reflect cell-specific Scn3a and Scn9a expression |
title_short | Na(+) current properties in islet α- and β-cells reflect cell-specific Scn3a and Scn9a expression |
title_sort | na(+) current properties in islet α- and β-cells reflect cell-specific scn3a and scn9a expression |
topic | Molecular and Cellular |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4253470/ https://www.ncbi.nlm.nih.gov/pubmed/25172946 http://dx.doi.org/10.1113/jphysiol.2014.274209 |
work_keys_str_mv | AT zhangquan nacurrentpropertiesinisletaandbcellsreflectcellspecificscn3aandscn9aexpression AT chibalinamargaritav nacurrentpropertiesinisletaandbcellsreflectcellspecificscn3aandscn9aexpression AT bengtssonmartin nacurrentpropertiesinisletaandbcellsreflectcellspecificscn3aandscn9aexpression AT groschnerlukasn nacurrentpropertiesinisletaandbcellsreflectcellspecificscn3aandscn9aexpression AT ramracheyareshma nacurrentpropertiesinisletaandbcellsreflectcellspecificscn3aandscn9aexpression AT rorsmannilsjg nacurrentpropertiesinisletaandbcellsreflectcellspecificscn3aandscn9aexpression AT leissveronika nacurrentpropertiesinisletaandbcellsreflectcellspecificscn3aandscn9aexpression AT nassarmohammeda nacurrentpropertiesinisletaandbcellsreflectcellspecificscn3aandscn9aexpression AT wellingandrea nacurrentpropertiesinisletaandbcellsreflectcellspecificscn3aandscn9aexpression AT gribblefionam nacurrentpropertiesinisletaandbcellsreflectcellspecificscn3aandscn9aexpression AT reimannfrank nacurrentpropertiesinisletaandbcellsreflectcellspecificscn3aandscn9aexpression AT hofmannfranz nacurrentpropertiesinisletaandbcellsreflectcellspecificscn3aandscn9aexpression AT woodjohnn nacurrentpropertiesinisletaandbcellsreflectcellspecificscn3aandscn9aexpression AT ashcroftfrancesm nacurrentpropertiesinisletaandbcellsreflectcellspecificscn3aandscn9aexpression AT rorsmanpatrik nacurrentpropertiesinisletaandbcellsreflectcellspecificscn3aandscn9aexpression |