Cargando…

TET1 regulates hypoxia-induced epithelial-mesenchymal transition by acting as a co-activator

BACKGROUND: Hypoxia induces the epithelial-mesenchymal transition, EMT, to promote cancer metastasis. In addition to transcriptional regulation mediated by hypoxia-inducible factors, HIFs, other epigenetic mechanisms of gene regulation, such as histone modifications and DNA methylation, are utilized...

Descripción completa

Detalles Bibliográficos
Autores principales: Tsai, Ya-Ping, Chen, Hsiao-Fan, Chen, Sung-Yuan, Cheng, Wei-Chung, Wang, Hsei-Wei, Shen, Zih-Jie, Song, Chunxiao, Teng, Shu-Chun, He, Chuan, Wu, Kou-Juey
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4253621/
https://www.ncbi.nlm.nih.gov/pubmed/25517638
http://dx.doi.org/10.1186/s13059-014-0513-0
_version_ 1782347267319005184
author Tsai, Ya-Ping
Chen, Hsiao-Fan
Chen, Sung-Yuan
Cheng, Wei-Chung
Wang, Hsei-Wei
Shen, Zih-Jie
Song, Chunxiao
Teng, Shu-Chun
He, Chuan
Wu, Kou-Juey
author_facet Tsai, Ya-Ping
Chen, Hsiao-Fan
Chen, Sung-Yuan
Cheng, Wei-Chung
Wang, Hsei-Wei
Shen, Zih-Jie
Song, Chunxiao
Teng, Shu-Chun
He, Chuan
Wu, Kou-Juey
author_sort Tsai, Ya-Ping
collection PubMed
description BACKGROUND: Hypoxia induces the epithelial-mesenchymal transition, EMT, to promote cancer metastasis. In addition to transcriptional regulation mediated by hypoxia-inducible factors, HIFs, other epigenetic mechanisms of gene regulation, such as histone modifications and DNA methylation, are utilized under hypoxia. However, whether DNA demethylation mediated by TET1, a DNA dioxygenase converting 5-methylcytosine, 5mC, into 5-hydroxymethylcytosine, 5hmC, plays a role in hypoxia-induced EMT is largely unknown. RESULTS: We show that TET1 regulates hypoxia-responsive gene expression. Hypoxia/HIF-2α regulates the expression of TET1. Knockdown of TET1 mitigates hypoxia-induced EMT. RNA sequencing and 5hmC sequencing identified the set of TET1-regulated genes. Cholesterol metabolic process genes are among the genes that showed high prevalence and statistical significance. We characterize one of the genes, INSIG1 (insulin induced gene 1), to confirm its expression and the 5hmC levels in its promoter. Knockdown of INSIG1 also mitigates hypoxia-induced EMT. Finally, TET1 is shown to be a transcriptional co-activator that interacts with HIF-1α and HIF-2α to enhance their transactivation activity independent of its enzymatic activity. TET1 acts as a co-activator to further enhance the expression of INSIG1 together with HIF-2α. We define the domain in HIF-1α that interacts with TET1 and map the domain in TET1 that confers transactivation to a 200 amino acid region that contains a CXXC domain. The TET1 catalytically inactive mutant is capable of rescuing hypoxia-induced EMT in TET1 knockdown cells. CONCLUSIONS: These findings demonstrate that TET1 serves as a transcription co-activator to regulate hypoxia-responsive gene expression and EMT, in addition to its role in demethylating 5mC. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s13059-014-0513-0) contains supplementary material, which is available to authorized users.
format Online
Article
Text
id pubmed-4253621
institution National Center for Biotechnology Information
language English
publishDate 2014
publisher BioMed Central
record_format MEDLINE/PubMed
spelling pubmed-42536212014-12-04 TET1 regulates hypoxia-induced epithelial-mesenchymal transition by acting as a co-activator Tsai, Ya-Ping Chen, Hsiao-Fan Chen, Sung-Yuan Cheng, Wei-Chung Wang, Hsei-Wei Shen, Zih-Jie Song, Chunxiao Teng, Shu-Chun He, Chuan Wu, Kou-Juey Genome Biol Research BACKGROUND: Hypoxia induces the epithelial-mesenchymal transition, EMT, to promote cancer metastasis. In addition to transcriptional regulation mediated by hypoxia-inducible factors, HIFs, other epigenetic mechanisms of gene regulation, such as histone modifications and DNA methylation, are utilized under hypoxia. However, whether DNA demethylation mediated by TET1, a DNA dioxygenase converting 5-methylcytosine, 5mC, into 5-hydroxymethylcytosine, 5hmC, plays a role in hypoxia-induced EMT is largely unknown. RESULTS: We show that TET1 regulates hypoxia-responsive gene expression. Hypoxia/HIF-2α regulates the expression of TET1. Knockdown of TET1 mitigates hypoxia-induced EMT. RNA sequencing and 5hmC sequencing identified the set of TET1-regulated genes. Cholesterol metabolic process genes are among the genes that showed high prevalence and statistical significance. We characterize one of the genes, INSIG1 (insulin induced gene 1), to confirm its expression and the 5hmC levels in its promoter. Knockdown of INSIG1 also mitigates hypoxia-induced EMT. Finally, TET1 is shown to be a transcriptional co-activator that interacts with HIF-1α and HIF-2α to enhance their transactivation activity independent of its enzymatic activity. TET1 acts as a co-activator to further enhance the expression of INSIG1 together with HIF-2α. We define the domain in HIF-1α that interacts with TET1 and map the domain in TET1 that confers transactivation to a 200 amino acid region that contains a CXXC domain. The TET1 catalytically inactive mutant is capable of rescuing hypoxia-induced EMT in TET1 knockdown cells. CONCLUSIONS: These findings demonstrate that TET1 serves as a transcription co-activator to regulate hypoxia-responsive gene expression and EMT, in addition to its role in demethylating 5mC. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s13059-014-0513-0) contains supplementary material, which is available to authorized users. BioMed Central 2014-12-03 2014 /pmc/articles/PMC4253621/ /pubmed/25517638 http://dx.doi.org/10.1186/s13059-014-0513-0 Text en © Tsai et al.; licensee BioMed Central Ltd. 2014 This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
spellingShingle Research
Tsai, Ya-Ping
Chen, Hsiao-Fan
Chen, Sung-Yuan
Cheng, Wei-Chung
Wang, Hsei-Wei
Shen, Zih-Jie
Song, Chunxiao
Teng, Shu-Chun
He, Chuan
Wu, Kou-Juey
TET1 regulates hypoxia-induced epithelial-mesenchymal transition by acting as a co-activator
title TET1 regulates hypoxia-induced epithelial-mesenchymal transition by acting as a co-activator
title_full TET1 regulates hypoxia-induced epithelial-mesenchymal transition by acting as a co-activator
title_fullStr TET1 regulates hypoxia-induced epithelial-mesenchymal transition by acting as a co-activator
title_full_unstemmed TET1 regulates hypoxia-induced epithelial-mesenchymal transition by acting as a co-activator
title_short TET1 regulates hypoxia-induced epithelial-mesenchymal transition by acting as a co-activator
title_sort tet1 regulates hypoxia-induced epithelial-mesenchymal transition by acting as a co-activator
topic Research
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4253621/
https://www.ncbi.nlm.nih.gov/pubmed/25517638
http://dx.doi.org/10.1186/s13059-014-0513-0
work_keys_str_mv AT tsaiyaping tet1regulateshypoxiainducedepithelialmesenchymaltransitionbyactingasacoactivator
AT chenhsiaofan tet1regulateshypoxiainducedepithelialmesenchymaltransitionbyactingasacoactivator
AT chensungyuan tet1regulateshypoxiainducedepithelialmesenchymaltransitionbyactingasacoactivator
AT chengweichung tet1regulateshypoxiainducedepithelialmesenchymaltransitionbyactingasacoactivator
AT wanghseiwei tet1regulateshypoxiainducedepithelialmesenchymaltransitionbyactingasacoactivator
AT shenzihjie tet1regulateshypoxiainducedepithelialmesenchymaltransitionbyactingasacoactivator
AT songchunxiao tet1regulateshypoxiainducedepithelialmesenchymaltransitionbyactingasacoactivator
AT tengshuchun tet1regulateshypoxiainducedepithelialmesenchymaltransitionbyactingasacoactivator
AT hechuan tet1regulateshypoxiainducedepithelialmesenchymaltransitionbyactingasacoactivator
AT wukoujuey tet1regulateshypoxiainducedepithelialmesenchymaltransitionbyactingasacoactivator