Cargando…

Database of osmoregulated proteins in mammalian cells

Biological information, even in highly specialized fields, is increasing at a volume that no single investigator can assimilate. The existence of this vast knowledge base creates the need for specialized computer databases to store and selectively sort the information. We have developed a manually c...

Descripción completa

Detalles Bibliográficos
Autores principales: Grady, Cameron R., Knepper, Mark A., Burg, Maurice B., Ferraris, Joan D.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Wiley Periodicals, Inc. 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4254105/
https://www.ncbi.nlm.nih.gov/pubmed/25355853
http://dx.doi.org/10.14814/phy2.12180
Descripción
Sumario:Biological information, even in highly specialized fields, is increasing at a volume that no single investigator can assimilate. The existence of this vast knowledge base creates the need for specialized computer databases to store and selectively sort the information. We have developed a manually curated database of the effects of hypertonicity on target proteins. Effects include changes in mRNA abundance and protein abundance, activity, phosphorylation state, binding, and cellular compartment. The biological information used in this database was derived from three research approaches: transcriptomic, proteomic, and reductionist (hypothesis‐driven). The data are presented in the form of grammatical triplets consisting of subject, verb phrase, and object. The purpose of this format is to allow the data to be read from left to right as an English sentence. It is readable either by humans or by computers using natural language processing algorithms. An example of a data entry reads “Hypertonicity increases activity of ABL1 in HEK293.” This database was created to provide access to a wealth of information on the effects of hypertonicity in a format that can be selectively sorted.