Cargando…
Comprehensive analysis of microRNA-regulated protein interaction network reveals the tumor suppressive role of microRNA-149 in human hepatocellular carcinoma via targeting AKT-mTOR pathway
BACKGROUND: Our previous study identified AKT1, AKT2 and AKT3 as unfavorable prognostic factors for patients with hepatocellular carcinoma (HCC). However, limited data are available on their exact mechanisms in HCC. Since microRNAs (miRNAs) are implicated in various human cancers including HCC, we a...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4255446/ https://www.ncbi.nlm.nih.gov/pubmed/25424347 http://dx.doi.org/10.1186/1476-4598-13-253 |
_version_ | 1782347433766813696 |
---|---|
author | Zhang, Yanqiong Guo, Xiaodong Xiong, Lu Yu, Lingxiang Li, Zhiwei Guo, Qiuyan Li, Zhiyan Li, Boan Lin, Na |
author_facet | Zhang, Yanqiong Guo, Xiaodong Xiong, Lu Yu, Lingxiang Li, Zhiwei Guo, Qiuyan Li, Zhiyan Li, Boan Lin, Na |
author_sort | Zhang, Yanqiong |
collection | PubMed |
description | BACKGROUND: Our previous study identified AKT1, AKT2 and AKT3 as unfavorable prognostic factors for patients with hepatocellular carcinoma (HCC). However, limited data are available on their exact mechanisms in HCC. Since microRNAs (miRNAs) are implicated in various human cancers including HCC, we aimed to screen miRNAs targeting AKTs and investigate their underlying mechanisms in HCC by integrating bioinformatics prediction, network analysis, functional assay and clinical validation. METHODS: Five online programs of miRNA target prediction and RNAhybrid which calculate the minimum free energy (MFE) of the duplex miRNA:mRNA were used to screen optimized miRNA-AKT interactions. Then, miRNA-regulated protein interaction network was constructed and 5 topological features (‘Degree’, ‘Node-betweenness’, ‘Edge-betweenness’, ‘Closeness’ and ‘Modularity’) were analyzed to link candidate miRNA-AKT interactions to oncogenesis and cancer hallmarks. Further systematic experiments were performed to validate the prediction results. RESULTS: Six optimized miRNA-AKT interactions (miR-149-AKT1, miR-302d-AKT1, miR-184-AKT2, miR-708-AKT2, miR-122-AKT3 and miR-124-AKT3) were obtained by combining the miRNA target prediction and MFE calculation. Then, 103 validated targets for the 6 candidate miRNAs were collected from miRTarBase. According to the enrichment analysis on GO items and KEGG pathways, these validated targets were significantly enriched in many known oncogenic pathways for HCC. In addition, miRNA-regulated protein interaction network were divided into 5 functional modules. Importantly, AKT1 and its interaction with mTOR respectively had the highest node-betweenness and edge-betweenness, implying their bottleneck roles in the network. Further experiments confirmed that miRNA-149 directly targeted AKT1 in HCC by a miRNA luciferase reporter approach. Then, re-expression of miR-149 significantly inhibited HCC cell proliferation and tumorigenicity by regulating AKT1/mTOR pathway. Notably, miR-149 down-regulation in clinical HCC tissues was correlated with tumor aggressiveness and poor prognosis of patients. CONCLUSION: This comprehensive analysis identified a list of miRNAs targeting AKTs and revealed their critical roles in HCC malignant progression. Especially, miR-149 may function as a tumor suppressive miRNA and play an important role in inhibiting the HCC tumorigenesis by modulating the AKT/mTOR pathway. Our clinical evidence also highlight the prognostic potential of miR-149 in HCC. The newly identified miR-149/AKT/mTOR axis might be a promising therapeutic target in the prevention and treatment of HCC. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/1476-4598-13-253) contains supplementary material, which is available to authorized users. |
format | Online Article Text |
id | pubmed-4255446 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2014 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-42554462014-12-05 Comprehensive analysis of microRNA-regulated protein interaction network reveals the tumor suppressive role of microRNA-149 in human hepatocellular carcinoma via targeting AKT-mTOR pathway Zhang, Yanqiong Guo, Xiaodong Xiong, Lu Yu, Lingxiang Li, Zhiwei Guo, Qiuyan Li, Zhiyan Li, Boan Lin, Na Mol Cancer Research BACKGROUND: Our previous study identified AKT1, AKT2 and AKT3 as unfavorable prognostic factors for patients with hepatocellular carcinoma (HCC). However, limited data are available on their exact mechanisms in HCC. Since microRNAs (miRNAs) are implicated in various human cancers including HCC, we aimed to screen miRNAs targeting AKTs and investigate their underlying mechanisms in HCC by integrating bioinformatics prediction, network analysis, functional assay and clinical validation. METHODS: Five online programs of miRNA target prediction and RNAhybrid which calculate the minimum free energy (MFE) of the duplex miRNA:mRNA were used to screen optimized miRNA-AKT interactions. Then, miRNA-regulated protein interaction network was constructed and 5 topological features (‘Degree’, ‘Node-betweenness’, ‘Edge-betweenness’, ‘Closeness’ and ‘Modularity’) were analyzed to link candidate miRNA-AKT interactions to oncogenesis and cancer hallmarks. Further systematic experiments were performed to validate the prediction results. RESULTS: Six optimized miRNA-AKT interactions (miR-149-AKT1, miR-302d-AKT1, miR-184-AKT2, miR-708-AKT2, miR-122-AKT3 and miR-124-AKT3) were obtained by combining the miRNA target prediction and MFE calculation. Then, 103 validated targets for the 6 candidate miRNAs were collected from miRTarBase. According to the enrichment analysis on GO items and KEGG pathways, these validated targets were significantly enriched in many known oncogenic pathways for HCC. In addition, miRNA-regulated protein interaction network were divided into 5 functional modules. Importantly, AKT1 and its interaction with mTOR respectively had the highest node-betweenness and edge-betweenness, implying their bottleneck roles in the network. Further experiments confirmed that miRNA-149 directly targeted AKT1 in HCC by a miRNA luciferase reporter approach. Then, re-expression of miR-149 significantly inhibited HCC cell proliferation and tumorigenicity by regulating AKT1/mTOR pathway. Notably, miR-149 down-regulation in clinical HCC tissues was correlated with tumor aggressiveness and poor prognosis of patients. CONCLUSION: This comprehensive analysis identified a list of miRNAs targeting AKTs and revealed their critical roles in HCC malignant progression. Especially, miR-149 may function as a tumor suppressive miRNA and play an important role in inhibiting the HCC tumorigenesis by modulating the AKT/mTOR pathway. Our clinical evidence also highlight the prognostic potential of miR-149 in HCC. The newly identified miR-149/AKT/mTOR axis might be a promising therapeutic target in the prevention and treatment of HCC. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/1476-4598-13-253) contains supplementary material, which is available to authorized users. BioMed Central 2014-11-26 /pmc/articles/PMC4255446/ /pubmed/25424347 http://dx.doi.org/10.1186/1476-4598-13-253 Text en © Zhang et al.; licensee BioMed Central Ltd. 2014 This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. |
spellingShingle | Research Zhang, Yanqiong Guo, Xiaodong Xiong, Lu Yu, Lingxiang Li, Zhiwei Guo, Qiuyan Li, Zhiyan Li, Boan Lin, Na Comprehensive analysis of microRNA-regulated protein interaction network reveals the tumor suppressive role of microRNA-149 in human hepatocellular carcinoma via targeting AKT-mTOR pathway |
title | Comprehensive analysis of microRNA-regulated protein interaction network reveals the tumor suppressive role of microRNA-149 in human hepatocellular carcinoma via targeting AKT-mTOR pathway |
title_full | Comprehensive analysis of microRNA-regulated protein interaction network reveals the tumor suppressive role of microRNA-149 in human hepatocellular carcinoma via targeting AKT-mTOR pathway |
title_fullStr | Comprehensive analysis of microRNA-regulated protein interaction network reveals the tumor suppressive role of microRNA-149 in human hepatocellular carcinoma via targeting AKT-mTOR pathway |
title_full_unstemmed | Comprehensive analysis of microRNA-regulated protein interaction network reveals the tumor suppressive role of microRNA-149 in human hepatocellular carcinoma via targeting AKT-mTOR pathway |
title_short | Comprehensive analysis of microRNA-regulated protein interaction network reveals the tumor suppressive role of microRNA-149 in human hepatocellular carcinoma via targeting AKT-mTOR pathway |
title_sort | comprehensive analysis of microrna-regulated protein interaction network reveals the tumor suppressive role of microrna-149 in human hepatocellular carcinoma via targeting akt-mtor pathway |
topic | Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4255446/ https://www.ncbi.nlm.nih.gov/pubmed/25424347 http://dx.doi.org/10.1186/1476-4598-13-253 |
work_keys_str_mv | AT zhangyanqiong comprehensiveanalysisofmicrornaregulatedproteininteractionnetworkrevealsthetumorsuppressiveroleofmicrorna149inhumanhepatocellularcarcinomaviatargetingaktmtorpathway AT guoxiaodong comprehensiveanalysisofmicrornaregulatedproteininteractionnetworkrevealsthetumorsuppressiveroleofmicrorna149inhumanhepatocellularcarcinomaviatargetingaktmtorpathway AT xionglu comprehensiveanalysisofmicrornaregulatedproteininteractionnetworkrevealsthetumorsuppressiveroleofmicrorna149inhumanhepatocellularcarcinomaviatargetingaktmtorpathway AT yulingxiang comprehensiveanalysisofmicrornaregulatedproteininteractionnetworkrevealsthetumorsuppressiveroleofmicrorna149inhumanhepatocellularcarcinomaviatargetingaktmtorpathway AT lizhiwei comprehensiveanalysisofmicrornaregulatedproteininteractionnetworkrevealsthetumorsuppressiveroleofmicrorna149inhumanhepatocellularcarcinomaviatargetingaktmtorpathway AT guoqiuyan comprehensiveanalysisofmicrornaregulatedproteininteractionnetworkrevealsthetumorsuppressiveroleofmicrorna149inhumanhepatocellularcarcinomaviatargetingaktmtorpathway AT lizhiyan comprehensiveanalysisofmicrornaregulatedproteininteractionnetworkrevealsthetumorsuppressiveroleofmicrorna149inhumanhepatocellularcarcinomaviatargetingaktmtorpathway AT liboan comprehensiveanalysisofmicrornaregulatedproteininteractionnetworkrevealsthetumorsuppressiveroleofmicrorna149inhumanhepatocellularcarcinomaviatargetingaktmtorpathway AT linna comprehensiveanalysisofmicrornaregulatedproteininteractionnetworkrevealsthetumorsuppressiveroleofmicrorna149inhumanhepatocellularcarcinomaviatargetingaktmtorpathway |