Cargando…
FISH molecular testing in cytological preparations from solid tumors
Many of the exciting new developments in solid tumor molecular cytogenetics impact classical and molecular pathology. Fluorescence in situ hybridization to identify specific DNA target sequences in nuclei of non-dividing cells in solid neoplasms has contributed to the integration of molecular cytoge...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4255722/ https://www.ncbi.nlm.nih.gov/pubmed/25478010 http://dx.doi.org/10.1186/s13039-014-0056-9 |
Sumario: | Many of the exciting new developments in solid tumor molecular cytogenetics impact classical and molecular pathology. Fluorescence in situ hybridization to identify specific DNA target sequences in nuclei of non-dividing cells in solid neoplasms has contributed to the integration of molecular cytogenetics into cytology in spite of the remarkable promiscuity of cancer genes. Indeed, although it is a low-throughput assay, fluorescence in situ hybridization enables the direct disclosure and localization of genetic markers in single nuclei. Gene fusions are among the most prominent genetic alterations in cancer, providing markers that may be determinant in needle biopsies that are negative or suspicious for malignancy, and may contribute to the correct classification of the tumors. In view of the expanding use of fluorescence in situ hybridization in cytology, future challenges include automated sample evaluation and the specification of common criteria for interpreting and reporting results. |
---|