Cargando…
Calculating semantic relatedness for biomedical use in a knowledge-poor environment
BACKGROUND: Computing semantic relatedness between textual labels representing biological and medical concepts is a crucial task in many automated knowledge extraction and processing applications relevant to the biomedical domain, specifically due to the huge amount of new findings being published e...
Autores principales: | Rybinski, Maciej, Aldana-Montes, José Francisco |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4255738/ https://www.ncbi.nlm.nih.gov/pubmed/25471751 http://dx.doi.org/10.1186/1471-2105-15-S14-S2 |
Ejemplares similares
-
tESA: a distributional measure for calculating semantic relatedness
por: Rybinski, Maciej, et al.
Publicado: (2016) -
Using a Search Engine-Based Mutually Reinforcing Approach to Assess the Semantic Relatedness of Biomedical Terms
por: Hsu, Yi-Yu, et al.
Publicado: (2013) -
A method for exploring implicit concept relatedness in biomedical knowledge network
por: Bai, Tian, et al.
Publicado: (2016) -
Semantic relatedness and similarity of biomedical terms: examining the effects of recency, size, and section of biomedical publications on the performance of word2vec
por: Zhu, Yongjun, et al.
Publicado: (2017) -
Opposing Effects of Semantic Diversity in Lexical and Semantic Relatedness Decisions
por: Hoffman, Paul, et al.
Publicado: (2015)