Cargando…
Paternal imprinting of the SLC22A1LS gene located in the human chromosome segment 11p15.5
BACKGROUND: Genomic imprinting is an epigenetic chromosomal modification in the gametes or zygotes that results in a non-random monoallelic expression of specific autosomal genes depending upon their parent of origin. Approximately 44 human genes have been reported to be imprinted. A majority of the...
Autores principales: | , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2004
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC425576/ https://www.ncbi.nlm.nih.gov/pubmed/15175115 http://dx.doi.org/10.1186/1471-2156-5-13 |
Sumario: | BACKGROUND: Genomic imprinting is an epigenetic chromosomal modification in the gametes or zygotes that results in a non-random monoallelic expression of specific autosomal genes depending upon their parent of origin. Approximately 44 human genes have been reported to be imprinted. A majority of them are clustered, including some on chromosome segment 11p15.5. We report here the imprinting status of the SLC22A1LS gene from the human chromosome segment 11p15.5 RESULTS: In order to test for allele specific expression patterns, PCR primer sets from the SLC22A1LS gene were used to look for heterozygosity in DNA samples from 17 spontaneous abortuses using PCR-SSCP and DNA sequence analyses. cDNA samples from different tissues of spontaneous abortuses showing heterozygosity were subjected to PCR-SSCP analysis to determine the allele specific expression pattern. PCR-SSCP analysis revealed heterozygosity in two of the 17 abortuses examined. DNA sequence analysis showed that the heterozygosity is caused by a G>A change at nucleotide position 473 (c.473G>A) in exon 4 of the SLC22A1LS gene. PCR-SSCP analysis suggested that this gene is paternally imprinted in five fetal tissues examined. CONCLUSIONS: This study reports the imprinting status of the SLC22A1LS gene for the first time. The results suggest imprinting of the paternal allele of this gene in five fetal tissues: brain, liver, placenta, kidneys and lungs. |
---|