Cargando…
Analysis of nucleotide-binding oligomerization domain proteins in a murine model of pneumococcal meningitis
BACKGROUND: The innate immune system recognizes pathogens via its pattern recognition receptors. The objective of this study was to investigate the role of the nucleotide-binding oligomerization domain (NOD) proteins, a family of the novel bacterial pattern recognition receptors, in host responses t...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4256814/ https://www.ncbi.nlm.nih.gov/pubmed/25443778 http://dx.doi.org/10.1186/s12879-014-0648-3 |
Sumario: | BACKGROUND: The innate immune system recognizes pathogens via its pattern recognition receptors. The objective of this study was to investigate the role of the nucleotide-binding oligomerization domain (NOD) proteins, a family of the novel bacterial pattern recognition receptors, in host responses to the gram-positive bacteria Streptococcus pneumoniae. METHODS: Sprague–Dawley rats were infected via intracisternal injections of viable S. pneumoniae, and rats in the control group were injected with sterile saline. After infection, real-time PCR was performed to determine the presence of mRNAs encoding NOD1 and NOD2. Quantitative analyses of the NOD1, NOD2 and NF-kB proteins were also performed western blotting following challenge infections with viable S. pneumoniae. The TNF-α and IL-6 levels in brain homogenates were evaluated using enzyme-linked immunosorbent assays (ELISAs). RESULTS: The results revealed up-regulations of the mRNA and protein levels of NOD2 within the CNS of rats with S. pneumoniae meningitis. Moreover, the activation of NF-κB in the brain tissues following infection with live S. pneumoniae was also significantly increased, which indicates that NOD2 mediated NF-κB activation in experimental pneumococcal meningitis. Similarly, TNF-α and IL-6 levels were increased in the brain following in vivo S. pneumoniae administration. CONCLUSIONS: These results suggest that NOD2 is involved in the host response to the gram-positive bacteria S. pneumoniae in the CNS and that NOD2 might play an important role in the initiation and/or progression of CNS inflammation associated with pneumococcal meningitis. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12879-014-0648-3) contains supplementary material, which is available to authorized users. |
---|