Cargando…
Bayesian neural networks for detecting epistasis in genetic association studies
BACKGROUND: Discovering causal genetic variants from large genetic association studies poses many difficult challenges. Assessing which genetic markers are involved in determining trait status is a computationally demanding task, especially in the presence of gene-gene interactions. RESULTS: A non-p...
Autores principales: | Beam, Andrew L, Motsinger-Reif, Alison, Doyle, Jon |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4256933/ https://www.ncbi.nlm.nih.gov/pubmed/25413600 http://dx.doi.org/10.1186/s12859-014-0368-0 |
Ejemplares similares
-
An investigation of gene-gene interactions in dose-response studies with Bayesian nonparametrics
por: Beam, Andrew L, et al.
Publicado: (2015) -
Learning genetic epistasis using Bayesian network scoring criteria
por: Jiang, Xia, et al.
Publicado: (2011) -
Epi-GTBN: an approach of epistasis mining based on genetic Tabu algorithm and Bayesian network
por: Guo, Yang, et al.
Publicado: (2019) -
Beyond IC(50)s: Towards Robust Statistical Methods for in vitro Association Studies
por: Beam, Andrew, et al.
Publicado: (2014) -
Grammatical evolution decision trees for detecting gene-gene interactions
por: Motsinger-Reif, Alison A, et al.
Publicado: (2010)