Cargando…
Promoting Cold-Start Items in Recommender Systems
As one of the major challenges, cold-start problem plagues nearly all recommender systems. In particular, new items will be overlooked, impeding the development of new products online. Given limited resources, how to utilize the knowledge of recommender systems and design efficient marketing strateg...
Autores principales: | Liu, Jin-Hu, Zhou, Tao, Zhang, Zi-Ke, Yang, Zimo, Liu, Chuang, Li, Wei-Min |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4257537/ https://www.ncbi.nlm.nih.gov/pubmed/25479013 http://dx.doi.org/10.1371/journal.pone.0113457 |
Ejemplares similares
-
Deep transfer learning with multimodal embedding to tackle cold-start and sparsity issues in recommendation system
por: Jafri, Syed Irteza Hussain, et al.
Publicado: (2022) -
Shilling Attacks Detection in Recommender Systems Based on Target Item Analysis
por: Zhou, Wei, et al.
Publicado: (2015) -
Detection of Abnormal Item Based on Time Intervals for Recommender Systems
por: Gao, Min, et al.
Publicado: (2014) -
A Deep Ranking Weighted Multihashing Recommender System for Item Recommendation
por: Kumar, Suresh, et al.
Publicado: (2022) -
Attentional factorization machine with review-based user–item interaction for recommendation
por: Li, Zheng, et al.
Publicado: (2023)