Cargando…

Immunomodulatory Properties of Streptococcus and Veillonella Isolates from the Human Small Intestine Microbiota

The human small intestine is a key site for interactions between the intestinal microbiota and the mucosal immune system. Here we investigated the immunomodulatory properties of representative species of commonly dominant small-intestinal microbial communities, including six streptococcal strains (f...

Descripción completa

Detalles Bibliográficos
Autores principales: van den Bogert, Bartholomeus, Meijerink, Marjolein, Zoetendal, Erwin G., Wells, Jerry M., Kleerebezem, Michiel
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4257559/
https://www.ncbi.nlm.nih.gov/pubmed/25479553
http://dx.doi.org/10.1371/journal.pone.0114277
_version_ 1782347769678135296
author van den Bogert, Bartholomeus
Meijerink, Marjolein
Zoetendal, Erwin G.
Wells, Jerry M.
Kleerebezem, Michiel
author_facet van den Bogert, Bartholomeus
Meijerink, Marjolein
Zoetendal, Erwin G.
Wells, Jerry M.
Kleerebezem, Michiel
author_sort van den Bogert, Bartholomeus
collection PubMed
description The human small intestine is a key site for interactions between the intestinal microbiota and the mucosal immune system. Here we investigated the immunomodulatory properties of representative species of commonly dominant small-intestinal microbial communities, including six streptococcal strains (four Streptococcus salivarius, one S. equinus, one S. parasanguinis) one Veillonella parvula strain, one Enterococcus gallinarum strain, and Lactobacillus plantarum WCFS1 as a bench mark strain on human monocyte-derived dendritic cells. The different streptococci induced varying levels of the cytokines IL-8, TNF-α, and IL-12p70, while the V. parvula strain showed a strong capacity to induce IL-6. E. gallinarum strain was a potent inducer of cytokines and TLR2/6 signalling. As Streptococcus and Veillonella can potentially interact metabolically and frequently co-occur in ecosystems, immunomodulation by pair-wise combinations of strains were also tested for their combined immunomodulatory properties. Strain combinations induced cytokine responses in dendritic cells that differed from what might be expected on the basis of the results obtained with the individual strains. A combination of (some) streptococci with Veillonella appeared to negate IL-12p70 production, while augmenting IL-8, IL-6, IL-10, and TNF-α responses. This suggests that immunomodulation data obtained in vitro with individual strains are unlikely to adequately represent immune responses to mixtures of gut microbiota communities in vivo. Nevertheless, analysing the immune responses of strains representing the dominant species in the intestine may help to identify immunomodulatory mechanisms that influence immune homeostasis.
format Online
Article
Text
id pubmed-4257559
institution National Center for Biotechnology Information
language English
publishDate 2014
publisher Public Library of Science
record_format MEDLINE/PubMed
spelling pubmed-42575592014-12-15 Immunomodulatory Properties of Streptococcus and Veillonella Isolates from the Human Small Intestine Microbiota van den Bogert, Bartholomeus Meijerink, Marjolein Zoetendal, Erwin G. Wells, Jerry M. Kleerebezem, Michiel PLoS One Research Article The human small intestine is a key site for interactions between the intestinal microbiota and the mucosal immune system. Here we investigated the immunomodulatory properties of representative species of commonly dominant small-intestinal microbial communities, including six streptococcal strains (four Streptococcus salivarius, one S. equinus, one S. parasanguinis) one Veillonella parvula strain, one Enterococcus gallinarum strain, and Lactobacillus plantarum WCFS1 as a bench mark strain on human monocyte-derived dendritic cells. The different streptococci induced varying levels of the cytokines IL-8, TNF-α, and IL-12p70, while the V. parvula strain showed a strong capacity to induce IL-6. E. gallinarum strain was a potent inducer of cytokines and TLR2/6 signalling. As Streptococcus and Veillonella can potentially interact metabolically and frequently co-occur in ecosystems, immunomodulation by pair-wise combinations of strains were also tested for their combined immunomodulatory properties. Strain combinations induced cytokine responses in dendritic cells that differed from what might be expected on the basis of the results obtained with the individual strains. A combination of (some) streptococci with Veillonella appeared to negate IL-12p70 production, while augmenting IL-8, IL-6, IL-10, and TNF-α responses. This suggests that immunomodulation data obtained in vitro with individual strains are unlikely to adequately represent immune responses to mixtures of gut microbiota communities in vivo. Nevertheless, analysing the immune responses of strains representing the dominant species in the intestine may help to identify immunomodulatory mechanisms that influence immune homeostasis. Public Library of Science 2014-12-05 /pmc/articles/PMC4257559/ /pubmed/25479553 http://dx.doi.org/10.1371/journal.pone.0114277 Text en © 2014 van den Bogert et al http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited.
spellingShingle Research Article
van den Bogert, Bartholomeus
Meijerink, Marjolein
Zoetendal, Erwin G.
Wells, Jerry M.
Kleerebezem, Michiel
Immunomodulatory Properties of Streptococcus and Veillonella Isolates from the Human Small Intestine Microbiota
title Immunomodulatory Properties of Streptococcus and Veillonella Isolates from the Human Small Intestine Microbiota
title_full Immunomodulatory Properties of Streptococcus and Veillonella Isolates from the Human Small Intestine Microbiota
title_fullStr Immunomodulatory Properties of Streptococcus and Veillonella Isolates from the Human Small Intestine Microbiota
title_full_unstemmed Immunomodulatory Properties of Streptococcus and Veillonella Isolates from the Human Small Intestine Microbiota
title_short Immunomodulatory Properties of Streptococcus and Veillonella Isolates from the Human Small Intestine Microbiota
title_sort immunomodulatory properties of streptococcus and veillonella isolates from the human small intestine microbiota
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4257559/
https://www.ncbi.nlm.nih.gov/pubmed/25479553
http://dx.doi.org/10.1371/journal.pone.0114277
work_keys_str_mv AT vandenbogertbartholomeus immunomodulatorypropertiesofstreptococcusandveillonellaisolatesfromthehumansmallintestinemicrobiota
AT meijerinkmarjolein immunomodulatorypropertiesofstreptococcusandveillonellaisolatesfromthehumansmallintestinemicrobiota
AT zoetendalerwing immunomodulatorypropertiesofstreptococcusandveillonellaisolatesfromthehumansmallintestinemicrobiota
AT wellsjerrym immunomodulatorypropertiesofstreptococcusandveillonellaisolatesfromthehumansmallintestinemicrobiota
AT kleerebezemmichiel immunomodulatorypropertiesofstreptococcusandveillonellaisolatesfromthehumansmallintestinemicrobiota