Cargando…

Halorhabdus tiamatea: proteogenomics and glycosidase activity measurements identify the first cultivated euryarchaeon from a deep-sea anoxic brine lake as potential polysaccharide degrader

Euryarchaea from the genus Halorhabdus have been found in hypersaline habitats worldwide, yet are represented by only two isolates: Halorhabdus utahensis AX-2(T) from the shallow Great Salt Lake of Utah, and Halorhabdus tiamatea SARL4B(T) from the Shaban deep-sea hypersaline anoxic lake (DHAL) in th...

Descripción completa

Detalles Bibliográficos
Autores principales: Werner, Johannes, Ferrer, Manuel, Michel, Gurvan, Mann, Alexander J, Huang, Sixing, Juarez, Silvia, Ciordia, Sergio, Albar, Juan P, Alcaide, María, La Cono, Violetta, Yakimov, Michail M, Antunes, André, Taborda, Marco, da Costa, Milton S, Hai, Tran, Glöckner, Frank Oliver, Golyshina, Olga V, Golyshin, Peter N, Teeling, Hanno, The MAMBA Consortium
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BlackWell Publishing Ltd 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4257568/
https://www.ncbi.nlm.nih.gov/pubmed/24428220
http://dx.doi.org/10.1111/1462-2920.12393
_version_ 1782347771604369408
author Werner, Johannes
Ferrer, Manuel
Michel, Gurvan
Mann, Alexander J
Huang, Sixing
Juarez, Silvia
Ciordia, Sergio
Albar, Juan P
Alcaide, María
La Cono, Violetta
Yakimov, Michail M
Antunes, André
Taborda, Marco
da Costa, Milton S
Hai, Tran
Glöckner, Frank Oliver
Golyshina, Olga V
Golyshin, Peter N
Teeling, Hanno
The MAMBA Consortium,
author_facet Werner, Johannes
Ferrer, Manuel
Michel, Gurvan
Mann, Alexander J
Huang, Sixing
Juarez, Silvia
Ciordia, Sergio
Albar, Juan P
Alcaide, María
La Cono, Violetta
Yakimov, Michail M
Antunes, André
Taborda, Marco
da Costa, Milton S
Hai, Tran
Glöckner, Frank Oliver
Golyshina, Olga V
Golyshin, Peter N
Teeling, Hanno
The MAMBA Consortium,
author_sort Werner, Johannes
collection PubMed
description Euryarchaea from the genus Halorhabdus have been found in hypersaline habitats worldwide, yet are represented by only two isolates: Halorhabdus utahensis AX-2(T) from the shallow Great Salt Lake of Utah, and Halorhabdus tiamatea SARL4B(T) from the Shaban deep-sea hypersaline anoxic lake (DHAL) in the Red Sea. We sequenced the H. tiamatea genome to elucidate its niche adaptations. Among sequenced archaea, H. tiamatea features the highest number of glycoside hydrolases, the majority of which were expressed in proteome experiments. Annotations and glycosidase activity measurements suggested an adaptation towards recalcitrant algal and plant-derived hemicelluloses. Glycosidase activities were higher at 2% than at 0% or 5% oxygen, supporting a preference for low-oxygen conditions. Likewise, proteomics indicated quinone-mediated electron transport at 2% oxygen, but a notable stress response at 5% oxygen. Halorhabdus tiamatea furthermore encodes proteins characteristic for thermophiles and light-dependent enzymes (e.g. bacteriorhodopsin), suggesting that H. tiamatea evolution was mostly not governed by a cold, dark, anoxic deep-sea habitat. Using enrichment and metagenomics, we could demonstrate presence of similar glycoside hydrolase-rich Halorhabdus members in the Mediterranean DHAL Medee, which supports that Halorhabdus species can occupy a distinct niche as polysaccharide degraders in hypersaline environments.
format Online
Article
Text
id pubmed-4257568
institution National Center for Biotechnology Information
language English
publishDate 2014
publisher BlackWell Publishing Ltd
record_format MEDLINE/PubMed
spelling pubmed-42575682014-12-12 Halorhabdus tiamatea: proteogenomics and glycosidase activity measurements identify the first cultivated euryarchaeon from a deep-sea anoxic brine lake as potential polysaccharide degrader Werner, Johannes Ferrer, Manuel Michel, Gurvan Mann, Alexander J Huang, Sixing Juarez, Silvia Ciordia, Sergio Albar, Juan P Alcaide, María La Cono, Violetta Yakimov, Michail M Antunes, André Taborda, Marco da Costa, Milton S Hai, Tran Glöckner, Frank Oliver Golyshina, Olga V Golyshin, Peter N Teeling, Hanno The MAMBA Consortium, Environ Microbiol Research Articles Euryarchaea from the genus Halorhabdus have been found in hypersaline habitats worldwide, yet are represented by only two isolates: Halorhabdus utahensis AX-2(T) from the shallow Great Salt Lake of Utah, and Halorhabdus tiamatea SARL4B(T) from the Shaban deep-sea hypersaline anoxic lake (DHAL) in the Red Sea. We sequenced the H. tiamatea genome to elucidate its niche adaptations. Among sequenced archaea, H. tiamatea features the highest number of glycoside hydrolases, the majority of which were expressed in proteome experiments. Annotations and glycosidase activity measurements suggested an adaptation towards recalcitrant algal and plant-derived hemicelluloses. Glycosidase activities were higher at 2% than at 0% or 5% oxygen, supporting a preference for low-oxygen conditions. Likewise, proteomics indicated quinone-mediated electron transport at 2% oxygen, but a notable stress response at 5% oxygen. Halorhabdus tiamatea furthermore encodes proteins characteristic for thermophiles and light-dependent enzymes (e.g. bacteriorhodopsin), suggesting that H. tiamatea evolution was mostly not governed by a cold, dark, anoxic deep-sea habitat. Using enrichment and metagenomics, we could demonstrate presence of similar glycoside hydrolase-rich Halorhabdus members in the Mediterranean DHAL Medee, which supports that Halorhabdus species can occupy a distinct niche as polysaccharide degraders in hypersaline environments. BlackWell Publishing Ltd 2014-08 2014-02-27 /pmc/articles/PMC4257568/ /pubmed/24428220 http://dx.doi.org/10.1111/1462-2920.12393 Text en © 2014 The Authors. Environmental Microbiology published by Society for Applied Microbiology and John Wiley & Sons Ltd. http://creativecommons.org/licenses/by-nc-nd/3.0/ This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.
spellingShingle Research Articles
Werner, Johannes
Ferrer, Manuel
Michel, Gurvan
Mann, Alexander J
Huang, Sixing
Juarez, Silvia
Ciordia, Sergio
Albar, Juan P
Alcaide, María
La Cono, Violetta
Yakimov, Michail M
Antunes, André
Taborda, Marco
da Costa, Milton S
Hai, Tran
Glöckner, Frank Oliver
Golyshina, Olga V
Golyshin, Peter N
Teeling, Hanno
The MAMBA Consortium,
Halorhabdus tiamatea: proteogenomics and glycosidase activity measurements identify the first cultivated euryarchaeon from a deep-sea anoxic brine lake as potential polysaccharide degrader
title Halorhabdus tiamatea: proteogenomics and glycosidase activity measurements identify the first cultivated euryarchaeon from a deep-sea anoxic brine lake as potential polysaccharide degrader
title_full Halorhabdus tiamatea: proteogenomics and glycosidase activity measurements identify the first cultivated euryarchaeon from a deep-sea anoxic brine lake as potential polysaccharide degrader
title_fullStr Halorhabdus tiamatea: proteogenomics and glycosidase activity measurements identify the first cultivated euryarchaeon from a deep-sea anoxic brine lake as potential polysaccharide degrader
title_full_unstemmed Halorhabdus tiamatea: proteogenomics and glycosidase activity measurements identify the first cultivated euryarchaeon from a deep-sea anoxic brine lake as potential polysaccharide degrader
title_short Halorhabdus tiamatea: proteogenomics and glycosidase activity measurements identify the first cultivated euryarchaeon from a deep-sea anoxic brine lake as potential polysaccharide degrader
title_sort halorhabdus tiamatea: proteogenomics and glycosidase activity measurements identify the first cultivated euryarchaeon from a deep-sea anoxic brine lake as potential polysaccharide degrader
topic Research Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4257568/
https://www.ncbi.nlm.nih.gov/pubmed/24428220
http://dx.doi.org/10.1111/1462-2920.12393
work_keys_str_mv AT wernerjohannes halorhabdustiamateaproteogenomicsandglycosidaseactivitymeasurementsidentifythefirstcultivatedeuryarchaeonfromadeepseaanoxicbrinelakeaspotentialpolysaccharidedegrader
AT ferrermanuel halorhabdustiamateaproteogenomicsandglycosidaseactivitymeasurementsidentifythefirstcultivatedeuryarchaeonfromadeepseaanoxicbrinelakeaspotentialpolysaccharidedegrader
AT michelgurvan halorhabdustiamateaproteogenomicsandglycosidaseactivitymeasurementsidentifythefirstcultivatedeuryarchaeonfromadeepseaanoxicbrinelakeaspotentialpolysaccharidedegrader
AT mannalexanderj halorhabdustiamateaproteogenomicsandglycosidaseactivitymeasurementsidentifythefirstcultivatedeuryarchaeonfromadeepseaanoxicbrinelakeaspotentialpolysaccharidedegrader
AT huangsixing halorhabdustiamateaproteogenomicsandglycosidaseactivitymeasurementsidentifythefirstcultivatedeuryarchaeonfromadeepseaanoxicbrinelakeaspotentialpolysaccharidedegrader
AT juarezsilvia halorhabdustiamateaproteogenomicsandglycosidaseactivitymeasurementsidentifythefirstcultivatedeuryarchaeonfromadeepseaanoxicbrinelakeaspotentialpolysaccharidedegrader
AT ciordiasergio halorhabdustiamateaproteogenomicsandglycosidaseactivitymeasurementsidentifythefirstcultivatedeuryarchaeonfromadeepseaanoxicbrinelakeaspotentialpolysaccharidedegrader
AT albarjuanp halorhabdustiamateaproteogenomicsandglycosidaseactivitymeasurementsidentifythefirstcultivatedeuryarchaeonfromadeepseaanoxicbrinelakeaspotentialpolysaccharidedegrader
AT alcaidemaria halorhabdustiamateaproteogenomicsandglycosidaseactivitymeasurementsidentifythefirstcultivatedeuryarchaeonfromadeepseaanoxicbrinelakeaspotentialpolysaccharidedegrader
AT laconovioletta halorhabdustiamateaproteogenomicsandglycosidaseactivitymeasurementsidentifythefirstcultivatedeuryarchaeonfromadeepseaanoxicbrinelakeaspotentialpolysaccharidedegrader
AT yakimovmichailm halorhabdustiamateaproteogenomicsandglycosidaseactivitymeasurementsidentifythefirstcultivatedeuryarchaeonfromadeepseaanoxicbrinelakeaspotentialpolysaccharidedegrader
AT antunesandre halorhabdustiamateaproteogenomicsandglycosidaseactivitymeasurementsidentifythefirstcultivatedeuryarchaeonfromadeepseaanoxicbrinelakeaspotentialpolysaccharidedegrader
AT tabordamarco halorhabdustiamateaproteogenomicsandglycosidaseactivitymeasurementsidentifythefirstcultivatedeuryarchaeonfromadeepseaanoxicbrinelakeaspotentialpolysaccharidedegrader
AT dacostamiltons halorhabdustiamateaproteogenomicsandglycosidaseactivitymeasurementsidentifythefirstcultivatedeuryarchaeonfromadeepseaanoxicbrinelakeaspotentialpolysaccharidedegrader
AT haitran halorhabdustiamateaproteogenomicsandglycosidaseactivitymeasurementsidentifythefirstcultivatedeuryarchaeonfromadeepseaanoxicbrinelakeaspotentialpolysaccharidedegrader
AT glocknerfrankoliver halorhabdustiamateaproteogenomicsandglycosidaseactivitymeasurementsidentifythefirstcultivatedeuryarchaeonfromadeepseaanoxicbrinelakeaspotentialpolysaccharidedegrader
AT golyshinaolgav halorhabdustiamateaproteogenomicsandglycosidaseactivitymeasurementsidentifythefirstcultivatedeuryarchaeonfromadeepseaanoxicbrinelakeaspotentialpolysaccharidedegrader
AT golyshinpetern halorhabdustiamateaproteogenomicsandglycosidaseactivitymeasurementsidentifythefirstcultivatedeuryarchaeonfromadeepseaanoxicbrinelakeaspotentialpolysaccharidedegrader
AT teelinghanno halorhabdustiamateaproteogenomicsandglycosidaseactivitymeasurementsidentifythefirstcultivatedeuryarchaeonfromadeepseaanoxicbrinelakeaspotentialpolysaccharidedegrader
AT themambaconsortium halorhabdustiamateaproteogenomicsandglycosidaseactivitymeasurementsidentifythefirstcultivatedeuryarchaeonfromadeepseaanoxicbrinelakeaspotentialpolysaccharidedegrader