Cargando…
PSEA-Quant: A Protein Set Enrichment Analysis on Label-Free and Label-Based Protein Quantification Data
[Image: see text] The majority of large-scale proteomics quantification methods yield long lists of quantified proteins that are often difficult to interpret and poorly reproduced. Computational approaches are required to analyze such intricate quantitative proteomics data sets. We propose a statist...
Autores principales: | Lavallée-Adam, Mathieu, Rauniyar, Navin, McClatchy, Daniel B., Yates, John R. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical
Society
2014
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4258137/ https://www.ncbi.nlm.nih.gov/pubmed/25177766 http://dx.doi.org/10.1021/pr500473n |
Ejemplares similares
-
Isobaric Labeling-Based Relative
Quantification in
Shotgun Proteomics
por: Rauniyar, Navin, et al.
Publicado: (2014) -
Quantitative analysis of global protein stability rates in tissues
por: McClatchy, Daniel B., et al.
Publicado: (2020) -
ProtQuant: a tool for the label-free quantification of MudPIT proteomics data
por: Bridges, Susan M, et al.
Publicado: (2007) -
freeQuant: A Mass Spectrometry Label-Free Quantification Software Tool for Complex Proteome Analysis
por: Deng, Ning, et al.
Publicado: (2015) -
IonQuant Enables Accurate and Sensitive Label-Free Quantification With FDR-Controlled Match-Between-Runs
por: Yu, Fengchao, et al.
Publicado: (2021)