Cargando…

The Metabolism of Polysaccharide from Atractylodes macrocephala Koidz and Its Effect on Intestinal Microflora

An active polysaccharide from the rhizome of Atractylodes macrocephala Koidz (PAM) was identified to improve and adjust disordered intestinal flora. High-performance gel permeation chromatography (HPGPC) and gas chromatography-mass spectrometry (GC-MS) were employed to identify the components of PAM...

Descripción completa

Detalles Bibliográficos
Autores principales: Wang, Ruijun, Zhou, Guisheng, Wang, Mengyue, Peng, Ying, Li, Xiaobo
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Hindawi Publishing Corporation 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4258363/
https://www.ncbi.nlm.nih.gov/pubmed/25505927
http://dx.doi.org/10.1155/2014/926381
Descripción
Sumario:An active polysaccharide from the rhizome of Atractylodes macrocephala Koidz (PAM) was identified to improve and adjust disordered intestinal flora. High-performance gel permeation chromatography (HPGPC) and gas chromatography-mass spectrometry (GC-MS) were employed to identify the components of PAM as rhamnose, glucose, mannose, xylose, and galactose at a ratio of 0.03 : 0.25 : 0.15 : 0.41 : 0.15. PAM metabolized in gastrointestinal tract when incubated with artificial gastric and intestinal juices. Anaerobic incubation of PAM on intestinal flora confirmed that PAM promoted the ability of intestinal bacteria to digest reducing sugar. Based on the Shannon index and similarity coefficient index of enterobacterial repetitive intergenic consensus-PCR (ERIC-PCR) fingerprinting of the total intestinal bacteria DNA, we concluded that PAM can significantly improve disordered intestinal flora and may be used as an oral adjuvant to regulate intestinal flora.