Cargando…
Reduction in Noise-Induced Functional Loss of the Cochleae in Mice with Pre-Existing Cochlear Dysfunction Due to Genetic Interference of Prestin
Various cochlear pathologies, such as acoustic trauma, ototoxicity and age-related degeneration, cause hearing loss. These pre-existing hearing losses can alter cochlear responses to subsequent acoustic overstimulation. So far, the knowledge on the impacts of pre-existing hearing loss caused by gene...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4259315/ https://www.ncbi.nlm.nih.gov/pubmed/25486270 http://dx.doi.org/10.1371/journal.pone.0113990 |
_version_ | 1782347987812352000 |
---|---|
author | Cai, Qunfeng Wang, Bo Coling, Donald Zuo, Jian Fang, Jie Yang, Shiming Vera, Krystal Hu, Bo Hua |
author_facet | Cai, Qunfeng Wang, Bo Coling, Donald Zuo, Jian Fang, Jie Yang, Shiming Vera, Krystal Hu, Bo Hua |
author_sort | Cai, Qunfeng |
collection | PubMed |
description | Various cochlear pathologies, such as acoustic trauma, ototoxicity and age-related degeneration, cause hearing loss. These pre-existing hearing losses can alter cochlear responses to subsequent acoustic overstimulation. So far, the knowledge on the impacts of pre-existing hearing loss caused by genetic alteration of cochlear genes is limited. Prestin is the motor protein expressed exclusively in outer hair cells in the mammalian cochlea. This motor protein contributes to outer hair cell motility. At present, it is not clear how the interference of prestin function affects cochlear responses to acoustic overstimulation. To address this question, a genetic model of prestin dysfunction in mice was created by inserting an internal ribosome entry site (IRES)-CreER(T2)-FRT-Neo-FRT cassette into the prestin locus after the stop codon. Homozygous mice exhibit a threshold elevation of auditory brainstem responses with large individual variation. These mice also display a threshold elevation and a shift of the input/output function of the distortion product otoacoustic emission, suggesting a reduction in outer hair cell function. The disruption of prestin function reduces the threshold shifts caused by exposure to a loud noise at 120 dB (sound pressure level) for 1 h. This reduction is positively correlated with the level of pre-noise cochlear dysfunction and is accompanied by a reduced change in Cdh1 expression, suggesting a reduction in molecular responses to the acoustic overstimulation. Together, these results suggest that prestin interference reduces cochlear stress responses to acoustic overstimulation. |
format | Online Article Text |
id | pubmed-4259315 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2014 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-42593152014-12-15 Reduction in Noise-Induced Functional Loss of the Cochleae in Mice with Pre-Existing Cochlear Dysfunction Due to Genetic Interference of Prestin Cai, Qunfeng Wang, Bo Coling, Donald Zuo, Jian Fang, Jie Yang, Shiming Vera, Krystal Hu, Bo Hua PLoS One Research Article Various cochlear pathologies, such as acoustic trauma, ototoxicity and age-related degeneration, cause hearing loss. These pre-existing hearing losses can alter cochlear responses to subsequent acoustic overstimulation. So far, the knowledge on the impacts of pre-existing hearing loss caused by genetic alteration of cochlear genes is limited. Prestin is the motor protein expressed exclusively in outer hair cells in the mammalian cochlea. This motor protein contributes to outer hair cell motility. At present, it is not clear how the interference of prestin function affects cochlear responses to acoustic overstimulation. To address this question, a genetic model of prestin dysfunction in mice was created by inserting an internal ribosome entry site (IRES)-CreER(T2)-FRT-Neo-FRT cassette into the prestin locus after the stop codon. Homozygous mice exhibit a threshold elevation of auditory brainstem responses with large individual variation. These mice also display a threshold elevation and a shift of the input/output function of the distortion product otoacoustic emission, suggesting a reduction in outer hair cell function. The disruption of prestin function reduces the threshold shifts caused by exposure to a loud noise at 120 dB (sound pressure level) for 1 h. This reduction is positively correlated with the level of pre-noise cochlear dysfunction and is accompanied by a reduced change in Cdh1 expression, suggesting a reduction in molecular responses to the acoustic overstimulation. Together, these results suggest that prestin interference reduces cochlear stress responses to acoustic overstimulation. Public Library of Science 2014-12-08 /pmc/articles/PMC4259315/ /pubmed/25486270 http://dx.doi.org/10.1371/journal.pone.0113990 Text en © 2014 Cai et al http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. |
spellingShingle | Research Article Cai, Qunfeng Wang, Bo Coling, Donald Zuo, Jian Fang, Jie Yang, Shiming Vera, Krystal Hu, Bo Hua Reduction in Noise-Induced Functional Loss of the Cochleae in Mice with Pre-Existing Cochlear Dysfunction Due to Genetic Interference of Prestin |
title | Reduction in Noise-Induced Functional Loss of the Cochleae in Mice with Pre-Existing Cochlear Dysfunction Due to Genetic Interference of Prestin |
title_full | Reduction in Noise-Induced Functional Loss of the Cochleae in Mice with Pre-Existing Cochlear Dysfunction Due to Genetic Interference of Prestin |
title_fullStr | Reduction in Noise-Induced Functional Loss of the Cochleae in Mice with Pre-Existing Cochlear Dysfunction Due to Genetic Interference of Prestin |
title_full_unstemmed | Reduction in Noise-Induced Functional Loss of the Cochleae in Mice with Pre-Existing Cochlear Dysfunction Due to Genetic Interference of Prestin |
title_short | Reduction in Noise-Induced Functional Loss of the Cochleae in Mice with Pre-Existing Cochlear Dysfunction Due to Genetic Interference of Prestin |
title_sort | reduction in noise-induced functional loss of the cochleae in mice with pre-existing cochlear dysfunction due to genetic interference of prestin |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4259315/ https://www.ncbi.nlm.nih.gov/pubmed/25486270 http://dx.doi.org/10.1371/journal.pone.0113990 |
work_keys_str_mv | AT caiqunfeng reductioninnoiseinducedfunctionallossofthecochleaeinmicewithpreexistingcochleardysfunctionduetogeneticinterferenceofprestin AT wangbo reductioninnoiseinducedfunctionallossofthecochleaeinmicewithpreexistingcochleardysfunctionduetogeneticinterferenceofprestin AT colingdonald reductioninnoiseinducedfunctionallossofthecochleaeinmicewithpreexistingcochleardysfunctionduetogeneticinterferenceofprestin AT zuojian reductioninnoiseinducedfunctionallossofthecochleaeinmicewithpreexistingcochleardysfunctionduetogeneticinterferenceofprestin AT fangjie reductioninnoiseinducedfunctionallossofthecochleaeinmicewithpreexistingcochleardysfunctionduetogeneticinterferenceofprestin AT yangshiming reductioninnoiseinducedfunctionallossofthecochleaeinmicewithpreexistingcochleardysfunctionduetogeneticinterferenceofprestin AT verakrystal reductioninnoiseinducedfunctionallossofthecochleaeinmicewithpreexistingcochleardysfunctionduetogeneticinterferenceofprestin AT hubohua reductioninnoiseinducedfunctionallossofthecochleaeinmicewithpreexistingcochleardysfunctionduetogeneticinterferenceofprestin |