Cargando…
Comorbidity Structure of Psychological Disorders in the Online e-PASS Data as Predictors of Psychosocial Adjustment Measures: Psychological Distress, Adequate Social Support, Self-Confidence, Quality of Life, and Suicidal Ideation
BACKGROUND: A relative newcomer to the field of psychology, e-mental health has been gaining momentum and has been given considerable research attention. Although several aspects of e-mental health have been studied, 1 aspect has yet to receive attention: the structure of comorbidity of psychologica...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
JMIR Publications Inc.
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4259919/ https://www.ncbi.nlm.nih.gov/pubmed/25351885 http://dx.doi.org/10.2196/jmir.3591 |
_version_ | 1782348095036588032 |
---|---|
author | AL-Asadi, Ali M Klein, Britt Meyer, Denny |
author_facet | AL-Asadi, Ali M Klein, Britt Meyer, Denny |
author_sort | AL-Asadi, Ali M |
collection | PubMed |
description | BACKGROUND: A relative newcomer to the field of psychology, e-mental health has been gaining momentum and has been given considerable research attention. Although several aspects of e-mental health have been studied, 1 aspect has yet to receive attention: the structure of comorbidity of psychological disorders and their relationships with measures of psychosocial adjustment including suicidal ideation in online samples. OBJECTIVE: This exploratory study attempted to identify the structure of comorbidity of 21 psychological disorders assessed by an automated online electronic psychological assessment screening system (e-PASS). The resulting comorbidity factor scores were then used to assess the association between comorbidity factor scores and measures of psychosocial adjustments (ie, psychological distress, suicidal ideation, adequate social support, self-confidence in dealing with mental health issues, and quality of life). METHODS: A total of 13,414 participants were assessed using a complex online algorithm that resulted in primary and secondary Diagnostic and Statistical Manual of Mental Disorders (Fourth Edition, Text Revision) diagnoses for 21 psychological disorders on dimensional severity scales. The scores on these severity scales were used in a principal component analysis (PCA) and the resulting comorbidity factor scores were related to 4 measures of psychosocial adjustments. RESULTS: A PCA based on 17 of the 21 psychological disorders resulted in a 4-factor model of comorbidity: anxiety-depression consisting of all anxiety disorders, major depressive episode (MDE), and insomnia; substance abuse consisting of alcohol and drug abuse and dependency; body image–eating consisting of eating disorders, body dysmorphic disorder, and obsessive-compulsive disorders; depression–sleep problems consisting of MDE, insomnia, and hypersomnia. All comorbidity factor scores were significantly associated with psychosocial measures of adjustment (P<.001). They were positively related to psychological distress and suicidal ideation, but negatively related to adequate social support, self-confidence, and quality of life. CONCLUSIONS: This exploratory study identified 4 comorbidity factors in the e-PASS data and these factor scores significantly predicted 5 psychosocial adjustment measures. TRIAL REGISTRATION: Australian and New Zealand Clinical Trials Registry ACTRN121611000704998; http://www.anzctr.org.au/trial_view.aspx?ID=336143 (Archived by WebCite at http://www.webcitation.org/618r3wvOG). |
format | Online Article Text |
id | pubmed-4259919 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2014 |
publisher | JMIR Publications Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-42599192014-12-09 Comorbidity Structure of Psychological Disorders in the Online e-PASS Data as Predictors of Psychosocial Adjustment Measures: Psychological Distress, Adequate Social Support, Self-Confidence, Quality of Life, and Suicidal Ideation AL-Asadi, Ali M Klein, Britt Meyer, Denny J Med Internet Res Original Paper BACKGROUND: A relative newcomer to the field of psychology, e-mental health has been gaining momentum and has been given considerable research attention. Although several aspects of e-mental health have been studied, 1 aspect has yet to receive attention: the structure of comorbidity of psychological disorders and their relationships with measures of psychosocial adjustment including suicidal ideation in online samples. OBJECTIVE: This exploratory study attempted to identify the structure of comorbidity of 21 psychological disorders assessed by an automated online electronic psychological assessment screening system (e-PASS). The resulting comorbidity factor scores were then used to assess the association between comorbidity factor scores and measures of psychosocial adjustments (ie, psychological distress, suicidal ideation, adequate social support, self-confidence in dealing with mental health issues, and quality of life). METHODS: A total of 13,414 participants were assessed using a complex online algorithm that resulted in primary and secondary Diagnostic and Statistical Manual of Mental Disorders (Fourth Edition, Text Revision) diagnoses for 21 psychological disorders on dimensional severity scales. The scores on these severity scales were used in a principal component analysis (PCA) and the resulting comorbidity factor scores were related to 4 measures of psychosocial adjustments. RESULTS: A PCA based on 17 of the 21 psychological disorders resulted in a 4-factor model of comorbidity: anxiety-depression consisting of all anxiety disorders, major depressive episode (MDE), and insomnia; substance abuse consisting of alcohol and drug abuse and dependency; body image–eating consisting of eating disorders, body dysmorphic disorder, and obsessive-compulsive disorders; depression–sleep problems consisting of MDE, insomnia, and hypersomnia. All comorbidity factor scores were significantly associated with psychosocial measures of adjustment (P<.001). They were positively related to psychological distress and suicidal ideation, but negatively related to adequate social support, self-confidence, and quality of life. CONCLUSIONS: This exploratory study identified 4 comorbidity factors in the e-PASS data and these factor scores significantly predicted 5 psychosocial adjustment measures. TRIAL REGISTRATION: Australian and New Zealand Clinical Trials Registry ACTRN121611000704998; http://www.anzctr.org.au/trial_view.aspx?ID=336143 (Archived by WebCite at http://www.webcitation.org/618r3wvOG). JMIR Publications Inc. 2014-10-28 /pmc/articles/PMC4259919/ /pubmed/25351885 http://dx.doi.org/10.2196/jmir.3591 Text en ©Ali M AL-Asadi, Britt Klein, Denny Meyer. Originally published in the Journal of Medical Internet Research (http://www.jmir.org), 28.10.2014. http://creativecommons.org/licenses/by/2.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work, first published in the Journal of Medical Internet Research, is properly cited. The complete bibliographic information, a link to the original publication on http://www.jmir.org/, as well as this copyright and license information must be included. |
spellingShingle | Original Paper AL-Asadi, Ali M Klein, Britt Meyer, Denny Comorbidity Structure of Psychological Disorders in the Online e-PASS Data as Predictors of Psychosocial Adjustment Measures: Psychological Distress, Adequate Social Support, Self-Confidence, Quality of Life, and Suicidal Ideation |
title | Comorbidity Structure of Psychological Disorders in the Online e-PASS Data as Predictors of Psychosocial Adjustment Measures: Psychological Distress, Adequate Social Support, Self-Confidence, Quality of Life, and Suicidal Ideation |
title_full | Comorbidity Structure of Psychological Disorders in the Online e-PASS Data as Predictors of Psychosocial Adjustment Measures: Psychological Distress, Adequate Social Support, Self-Confidence, Quality of Life, and Suicidal Ideation |
title_fullStr | Comorbidity Structure of Psychological Disorders in the Online e-PASS Data as Predictors of Psychosocial Adjustment Measures: Psychological Distress, Adequate Social Support, Self-Confidence, Quality of Life, and Suicidal Ideation |
title_full_unstemmed | Comorbidity Structure of Psychological Disorders in the Online e-PASS Data as Predictors of Psychosocial Adjustment Measures: Psychological Distress, Adequate Social Support, Self-Confidence, Quality of Life, and Suicidal Ideation |
title_short | Comorbidity Structure of Psychological Disorders in the Online e-PASS Data as Predictors of Psychosocial Adjustment Measures: Psychological Distress, Adequate Social Support, Self-Confidence, Quality of Life, and Suicidal Ideation |
title_sort | comorbidity structure of psychological disorders in the online e-pass data as predictors of psychosocial adjustment measures: psychological distress, adequate social support, self-confidence, quality of life, and suicidal ideation |
topic | Original Paper |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4259919/ https://www.ncbi.nlm.nih.gov/pubmed/25351885 http://dx.doi.org/10.2196/jmir.3591 |
work_keys_str_mv | AT alasadialim comorbiditystructureofpsychologicaldisordersintheonlineepassdataaspredictorsofpsychosocialadjustmentmeasurespsychologicaldistressadequatesocialsupportselfconfidencequalityoflifeandsuicidalideation AT kleinbritt comorbiditystructureofpsychologicaldisordersintheonlineepassdataaspredictorsofpsychosocialadjustmentmeasurespsychologicaldistressadequatesocialsupportselfconfidencequalityoflifeandsuicidalideation AT meyerdenny comorbiditystructureofpsychologicaldisordersintheonlineepassdataaspredictorsofpsychosocialadjustmentmeasurespsychologicaldistressadequatesocialsupportselfconfidencequalityoflifeandsuicidalideation |