Cargando…
The use of bootstrapping when using propensity-score matching without replacement: a simulation study
Propensity-score matching is frequently used to estimate the effect of treatments, exposures, and interventions when using observational data. An important issue when using propensity-score matching is how to estimate the standard error of the estimated treatment effect. Accurate variance estimation...
Autores principales: | Austin, Peter C, Small, Dylan S |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BlackWell Publishing Ltd
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4260115/ https://www.ncbi.nlm.nih.gov/pubmed/25087884 http://dx.doi.org/10.1002/sim.6276 |
Ejemplares similares
-
Bootstrap vs asymptotic variance estimation when using propensity score weighting with continuous and binary outcomes
por: Austin, Peter C.
Publicado: (2022) -
Variance estimation when using propensity‐score matching with replacement with survival or time‐to‐event outcomes
por: Austin, Peter C., et al.
Publicado: (2020) -
Propensity score interval matching: using bootstrap confidence intervals for accommodating estimation errors of propensity scores
por: Pan, Wei, et al.
Publicado: (2015) -
Nearest Neighbour Propensity Score Matching and Bootstrapping for Estimating Binary Patient Response in Oncology: A Monte Carlo Simulation
por: Geldof, Tine, et al.
Publicado: (2020) -
Propensity score stratification using bootstrap aggregating classification trees analysis
por: Otok, Bambang Widjanarko, et al.
Publicado: (2020)