Cargando…
Annals Reports
Oligosaccharide sequences in glycomes of eukaryotes and prokaryotes are enormously diverse. The reasons are not fully understood, but there is an increasing number of examples of the involvement of specific oligosaccharide sequences as ligands in protein–carbohydrate interactions in health and, dire...
Autor principal: | |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BlackWell Publishing Ltd
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4260124/ https://www.ncbi.nlm.nih.gov/pubmed/23834439 http://dx.doi.org/10.1111/nyas.12210 |
_version_ | 1782348128489308160 |
---|---|
author | Feizi, Ten |
author_facet | Feizi, Ten |
author_sort | Feizi, Ten |
collection | PubMed |
description | Oligosaccharide sequences in glycomes of eukaryotes and prokaryotes are enormously diverse. The reasons are not fully understood, but there is an increasing number of examples of the involvement of specific oligosaccharide sequences as ligands in protein–carbohydrate interactions in health and, directly or indirectly, in every major disease, be it infectious or noninfectious. The pinpointing and characterizing of oligosaccharide ligands within glycomes has been one of the most challenging aspects of molecular cell biology, as oligosaccharides cannot be cloned and are generally available in limited amounts. This overview recounts the background to the development of a microarray system that is poised for surveying proteomes for carbohydrate-binding activities and glycomes for assigning the oligosaccharide ligands. Examples are selected by way of illustrating the potential of “designer” microarrays for ligand discovery at the interface of infection, immunity, and glycobiology. Particularly highlighted are sulfo-oligosaccharide and gluco-oligosaccharide recognition systems elucidated using microarrays. |
format | Online Article Text |
id | pubmed-4260124 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2013 |
publisher | BlackWell Publishing Ltd |
record_format | MEDLINE/PubMed |
spelling | pubmed-42601242014-12-11 Annals Reports Feizi, Ten Ann N Y Acad Sci Original Articles Oligosaccharide sequences in glycomes of eukaryotes and prokaryotes are enormously diverse. The reasons are not fully understood, but there is an increasing number of examples of the involvement of specific oligosaccharide sequences as ligands in protein–carbohydrate interactions in health and, directly or indirectly, in every major disease, be it infectious or noninfectious. The pinpointing and characterizing of oligosaccharide ligands within glycomes has been one of the most challenging aspects of molecular cell biology, as oligosaccharides cannot be cloned and are generally available in limited amounts. This overview recounts the background to the development of a microarray system that is poised for surveying proteomes for carbohydrate-binding activities and glycomes for assigning the oligosaccharide ligands. Examples are selected by way of illustrating the potential of “designer” microarrays for ligand discovery at the interface of infection, immunity, and glycobiology. Particularly highlighted are sulfo-oligosaccharide and gluco-oligosaccharide recognition systems elucidated using microarrays. BlackWell Publishing Ltd 2013-07 2013-07-08 /pmc/articles/PMC4260124/ /pubmed/23834439 http://dx.doi.org/10.1111/nyas.12210 Text en © 2013 The New York Academy of Sciences http://creativecommons.org/licenses/by/3.0/ This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Original Articles Feizi, Ten Annals Reports |
title | Annals Reports |
title_full | Annals Reports |
title_fullStr | Annals Reports |
title_full_unstemmed | Annals Reports |
title_short | Annals Reports |
title_sort | annals reports |
topic | Original Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4260124/ https://www.ncbi.nlm.nih.gov/pubmed/23834439 http://dx.doi.org/10.1111/nyas.12210 |
work_keys_str_mv | AT feiziten annalsreports |