Cargando…
Reliable estimation of prediction errors for QSAR models under model uncertainty using double cross-validation
BACKGROUND: Generally, QSAR modelling requires both model selection and validation since there is no a priori knowledge about the optimal QSAR model. Prediction errors (PE) are frequently used to select and to assess the models under study. Reliable estimation of prediction errors is challenging – e...
Autores principales: | Baumann, Désirée, Baumann, Knut |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4260165/ https://www.ncbi.nlm.nih.gov/pubmed/25506400 http://dx.doi.org/10.1186/s13321-014-0047-1 |
Ejemplares similares
-
Reliable estimation of externally validated prediction errors for QSAR models
por: Baumann, Désirée, et al.
Publicado: (2013) -
Large-scale evaluation of k-fold cross-validation ensembles for uncertainty estimation
por: Dutschmann, Thomas-Martin, et al.
Publicado: (2023) -
Cross-validation is dead. Long live cross-validation! Model validation based on resampling
por: Baumann, Knut
Publicado: (2010) -
On some aspects of validation of predictive QSAR models
por: Roy, K, et al.
Publicado: (2008) -
Methods for reliability and uncertainty assessment and for applicability evaluations of classification- and regression-based QSARs.
por: Eriksson, Lennart, et al.
Publicado: (2003)