Cargando…

Transition Metal Dichalcogenide Growth via Close Proximity Precursor Supply

Reliable chemical vapour deposition (CVD) of transition metal dichalcogenides (TMDs) is currently a highly pressing research field, as numerous potential applications rely on the production of high quality films on a macroscopic scale. Here, we show the use of liquid phase exfoliated nanosheets and...

Descripción completa

Detalles Bibliográficos
Autores principales: O'Brien, Maria, McEvoy, Niall, Hallam, Toby, Kim, Hye-Young, Berner, Nina C., Hanlon, Damien, Lee, Kangho, Coleman, Jonathan N., Duesberg, Georg S.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4260218/
https://www.ncbi.nlm.nih.gov/pubmed/25487822
http://dx.doi.org/10.1038/srep07374
_version_ 1782348145295884288
author O'Brien, Maria
McEvoy, Niall
Hallam, Toby
Kim, Hye-Young
Berner, Nina C.
Hanlon, Damien
Lee, Kangho
Coleman, Jonathan N.
Duesberg, Georg S.
author_facet O'Brien, Maria
McEvoy, Niall
Hallam, Toby
Kim, Hye-Young
Berner, Nina C.
Hanlon, Damien
Lee, Kangho
Coleman, Jonathan N.
Duesberg, Georg S.
author_sort O'Brien, Maria
collection PubMed
description Reliable chemical vapour deposition (CVD) of transition metal dichalcogenides (TMDs) is currently a highly pressing research field, as numerous potential applications rely on the production of high quality films on a macroscopic scale. Here, we show the use of liquid phase exfoliated nanosheets and patterned sputter deposited layers as solid precursors for chemical vapour deposition. TMD monolayers were realized using a close proximity precursor supply in a CVD microreactor setup. A model describing the growth mechanism, which is capable of producing TMD monolayers on arbitrary substrates, is presented. Raman spectroscopy, photoluminescence, X-ray photoelectron spectroscopy, atomic force microscopy, transmission electron microscopy, scanning electron microscopy and electrical transport measurements reveal the high quality of the TMD samples produced. Furthermore, through patterning of the precursor supply, we achieve patterned growth of monolayer TMDs in defined locations, which could be adapted for the facile production of electronic device components.
format Online
Article
Text
id pubmed-4260218
institution National Center for Biotechnology Information
language English
publishDate 2014
publisher Nature Publishing Group
record_format MEDLINE/PubMed
spelling pubmed-42602182014-12-15 Transition Metal Dichalcogenide Growth via Close Proximity Precursor Supply O'Brien, Maria McEvoy, Niall Hallam, Toby Kim, Hye-Young Berner, Nina C. Hanlon, Damien Lee, Kangho Coleman, Jonathan N. Duesberg, Georg S. Sci Rep Article Reliable chemical vapour deposition (CVD) of transition metal dichalcogenides (TMDs) is currently a highly pressing research field, as numerous potential applications rely on the production of high quality films on a macroscopic scale. Here, we show the use of liquid phase exfoliated nanosheets and patterned sputter deposited layers as solid precursors for chemical vapour deposition. TMD monolayers were realized using a close proximity precursor supply in a CVD microreactor setup. A model describing the growth mechanism, which is capable of producing TMD monolayers on arbitrary substrates, is presented. Raman spectroscopy, photoluminescence, X-ray photoelectron spectroscopy, atomic force microscopy, transmission electron microscopy, scanning electron microscopy and electrical transport measurements reveal the high quality of the TMD samples produced. Furthermore, through patterning of the precursor supply, we achieve patterned growth of monolayer TMDs in defined locations, which could be adapted for the facile production of electronic device components. Nature Publishing Group 2014-12-09 /pmc/articles/PMC4260218/ /pubmed/25487822 http://dx.doi.org/10.1038/srep07374 Text en Copyright © 2014, Macmillan Publishers Limited. All rights reserved http://creativecommons.org/licenses/by-nc-sa/4.0/ This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License. The images or other third party material in this article are included in the article's Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder in order to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-sa/4.0/
spellingShingle Article
O'Brien, Maria
McEvoy, Niall
Hallam, Toby
Kim, Hye-Young
Berner, Nina C.
Hanlon, Damien
Lee, Kangho
Coleman, Jonathan N.
Duesberg, Georg S.
Transition Metal Dichalcogenide Growth via Close Proximity Precursor Supply
title Transition Metal Dichalcogenide Growth via Close Proximity Precursor Supply
title_full Transition Metal Dichalcogenide Growth via Close Proximity Precursor Supply
title_fullStr Transition Metal Dichalcogenide Growth via Close Proximity Precursor Supply
title_full_unstemmed Transition Metal Dichalcogenide Growth via Close Proximity Precursor Supply
title_short Transition Metal Dichalcogenide Growth via Close Proximity Precursor Supply
title_sort transition metal dichalcogenide growth via close proximity precursor supply
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4260218/
https://www.ncbi.nlm.nih.gov/pubmed/25487822
http://dx.doi.org/10.1038/srep07374
work_keys_str_mv AT obrienmaria transitionmetaldichalcogenidegrowthviacloseproximityprecursorsupply
AT mcevoyniall transitionmetaldichalcogenidegrowthviacloseproximityprecursorsupply
AT hallamtoby transitionmetaldichalcogenidegrowthviacloseproximityprecursorsupply
AT kimhyeyoung transitionmetaldichalcogenidegrowthviacloseproximityprecursorsupply
AT bernerninac transitionmetaldichalcogenidegrowthviacloseproximityprecursorsupply
AT hanlondamien transitionmetaldichalcogenidegrowthviacloseproximityprecursorsupply
AT leekangho transitionmetaldichalcogenidegrowthviacloseproximityprecursorsupply
AT colemanjonathann transitionmetaldichalcogenidegrowthviacloseproximityprecursorsupply
AT duesberggeorgs transitionmetaldichalcogenidegrowthviacloseproximityprecursorsupply