Cargando…
Empirical demonstration of environmental sensing in catalytic RNA: evolution of interpretive behavior at the origins of life
BACKGROUND: The origins of life on the Earth required chemical entities to interact with their environments in ways that could respond to natural selection. The concept of interpretation, where biotic entities use signs in their environment as proxy for the existence of other items of selective valu...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4260251/ https://www.ncbi.nlm.nih.gov/pubmed/25471341 http://dx.doi.org/10.1186/s12862-014-0248-2 |
_version_ | 1782348153261916160 |
---|---|
author | Lehman, Niles Bernhard, Tess Larson, Brian C Robinson, Andrew JN Southgate, Christopher CB |
author_facet | Lehman, Niles Bernhard, Tess Larson, Brian C Robinson, Andrew JN Southgate, Christopher CB |
author_sort | Lehman, Niles |
collection | PubMed |
description | BACKGROUND: The origins of life on the Earth required chemical entities to interact with their environments in ways that could respond to natural selection. The concept of interpretation, where biotic entities use signs in their environment as proxy for the existence of other items of selective value in their environment, has been proposed on theoretical grounds to be relevant to the origins and early evolution of life. However this concept has not been demonstrated empirically. RESULTS: Here, we present data that certain catalytic RNA sequences have properties that would enable interpretation of divalent cation levels in their environment. By assaying the responsiveness of two variants of the Tetrahymena ribozyme to the Ca(2+) ion as a sign for the more catalytically useful Mg(2+) ion, we show an empirical proof-of-principle that interpretation can be an evolvable trait in RNA, often suggested as a model system for early life. In particular we demonstrate that in vitro, the wild-type version of the Tetrahymena ribozyme is not interpretive, in that it cannot use Ca(2+) as a sign for Mg(2+). Yet a variant of this sequence containing five mutations that alter its ability to utilize the Ca(2+) ion engenders a strong interpretive characteristic in this RNA. CONCLUSIONS: We have shown that RNA molecules in a test tube can meet the minimum criteria for the evolution of interpretive behaviour in regards to their responses to divalent metal ion concentrations in their environment. Interpretation in RNA molecules provides a property entirely dependent on natural physico-chemical interactions, but capable of shaping the evolutionary trajectory of macromolecules, especially in the earliest stages of life’s history. |
format | Online Article Text |
id | pubmed-4260251 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2014 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-42602512014-12-09 Empirical demonstration of environmental sensing in catalytic RNA: evolution of interpretive behavior at the origins of life Lehman, Niles Bernhard, Tess Larson, Brian C Robinson, Andrew JN Southgate, Christopher CB BMC Evol Biol Research Article BACKGROUND: The origins of life on the Earth required chemical entities to interact with their environments in ways that could respond to natural selection. The concept of interpretation, where biotic entities use signs in their environment as proxy for the existence of other items of selective value in their environment, has been proposed on theoretical grounds to be relevant to the origins and early evolution of life. However this concept has not been demonstrated empirically. RESULTS: Here, we present data that certain catalytic RNA sequences have properties that would enable interpretation of divalent cation levels in their environment. By assaying the responsiveness of two variants of the Tetrahymena ribozyme to the Ca(2+) ion as a sign for the more catalytically useful Mg(2+) ion, we show an empirical proof-of-principle that interpretation can be an evolvable trait in RNA, often suggested as a model system for early life. In particular we demonstrate that in vitro, the wild-type version of the Tetrahymena ribozyme is not interpretive, in that it cannot use Ca(2+) as a sign for Mg(2+). Yet a variant of this sequence containing five mutations that alter its ability to utilize the Ca(2+) ion engenders a strong interpretive characteristic in this RNA. CONCLUSIONS: We have shown that RNA molecules in a test tube can meet the minimum criteria for the evolution of interpretive behaviour in regards to their responses to divalent metal ion concentrations in their environment. Interpretation in RNA molecules provides a property entirely dependent on natural physico-chemical interactions, but capable of shaping the evolutionary trajectory of macromolecules, especially in the earliest stages of life’s history. BioMed Central 2014-12-04 /pmc/articles/PMC4260251/ /pubmed/25471341 http://dx.doi.org/10.1186/s12862-014-0248-2 Text en © Lehman et al.; licensee BioMed Central Ltd. 2014 This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. |
spellingShingle | Research Article Lehman, Niles Bernhard, Tess Larson, Brian C Robinson, Andrew JN Southgate, Christopher CB Empirical demonstration of environmental sensing in catalytic RNA: evolution of interpretive behavior at the origins of life |
title | Empirical demonstration of environmental sensing in catalytic RNA: evolution of interpretive behavior at the origins of life |
title_full | Empirical demonstration of environmental sensing in catalytic RNA: evolution of interpretive behavior at the origins of life |
title_fullStr | Empirical demonstration of environmental sensing in catalytic RNA: evolution of interpretive behavior at the origins of life |
title_full_unstemmed | Empirical demonstration of environmental sensing in catalytic RNA: evolution of interpretive behavior at the origins of life |
title_short | Empirical demonstration of environmental sensing in catalytic RNA: evolution of interpretive behavior at the origins of life |
title_sort | empirical demonstration of environmental sensing in catalytic rna: evolution of interpretive behavior at the origins of life |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4260251/ https://www.ncbi.nlm.nih.gov/pubmed/25471341 http://dx.doi.org/10.1186/s12862-014-0248-2 |
work_keys_str_mv | AT lehmanniles empiricaldemonstrationofenvironmentalsensingincatalyticrnaevolutionofinterpretivebehaviorattheoriginsoflife AT bernhardtess empiricaldemonstrationofenvironmentalsensingincatalyticrnaevolutionofinterpretivebehaviorattheoriginsoflife AT larsonbrianc empiricaldemonstrationofenvironmentalsensingincatalyticrnaevolutionofinterpretivebehaviorattheoriginsoflife AT robinsonandrewjn empiricaldemonstrationofenvironmentalsensingincatalyticrnaevolutionofinterpretivebehaviorattheoriginsoflife AT southgatechristophercb empiricaldemonstrationofenvironmentalsensingincatalyticrnaevolutionofinterpretivebehaviorattheoriginsoflife |