Cargando…
CompareSVM: supervised, Support Vector Machine (SVM) inference of gene regularity networks
BACKGROUND: Predication of gene regularity network (GRN) from expression data is a challenging task. There are many methods that have been developed to address this challenge ranging from supervised to unsupervised methods. Most promising methods are based on support vector machine (SVM). There is a...
Autores principales: | Gillani, Zeeshan, Akash, Muhammad Sajid Hamid, Rahaman, MD Matiur, Chen, Ming |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4260380/ https://www.ncbi.nlm.nih.gov/pubmed/25433465 http://dx.doi.org/10.1186/s12859-014-0395-x |
Ejemplares similares
-
Data on Support Vector Machines (SVM) model to forecast photovoltaic power
por: Malvoni, M., et al.
Publicado: (2016) -
Parallelization of multicategory support vector machines (PMC-SVM) for classifying microarray data
por: Zhang, Chaoyang, et al.
Publicado: (2006) -
Quality assessment of tandem mass spectra using support vector machine (SVM)
por: Zou, An-Min, et al.
Publicado: (2009) -
LipoSVM: Prediction of Lysine Lipoylation in Proteins based on the Support Vector Machine
por: Wu, Meiqi, et al.
Publicado: (2019) -
Global-local least-squares support vector machine (GLocal-LS-SVM)
por: Youssef Ali Amer, Ahmed
Publicado: (2023)